JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials
Kim, Seung-Tae; Cho, Won-Ju;
  PDF(new window)
 Abstract
In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.
 Keywords
a-IGZO (amorphous In-Ga-Zn-O);TFT (thin-film transistor);Work function;
 Language
Korean
 Cited by
 References
1.
M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, Y. Ugajin, and N. Sekine, IEICE transactions on electronics, 90, 11 (2007).

2.
T. Kamiya, K. Nomura, and H. Hosono, Science and Technology of Advanced Materials, 11, 4 (2010).

3.
K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, Electron Devices, IEEE Transactions on, 36, 12 (1989). [DOI: http://dx.doi.org/10.1109/16.40970] crossref(new window)

4.
S. J. Lim, S. J. Kwon, H. Kim, and J. S. Park, Applied Physics Letters, 91, 18 (2007).

5.
H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, and H. Hosono, Applied physics letters, 89, 11 (2006). [DOI: http://dx.doi.org/10.1063/1.2353811] crossref(new window)

6.
A. Suresh and J. F. Muth, Applied Physics Letters, 92, 3 (2008). [DOI: http://dx.doi.org/10.1063/1.2824758]

7.
S. Y. Park, J. H. Song, C. K. Lee, B. G. Son, C. K. Lee, H. J. Kim, and H. J. Kim, Electron Device Letters, IEEE, 34, 7 (2013).

8.
B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, Applied physics letters, 89, 6 (2006). [DOI: http://dx.doi.org/10.1063/1.2335372]

9.
V. Subramanian, M. Toita, N. R. Ibrahim, S. J. Souri, and K. C. Saraswat, Electron Device Letters, IEEE, 20, 7 (1999). [DOI:http://dx.doi.org/10.1109/55.772370]

10.
A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, Applied physics letters, 90, 12 (2007). [DOI: http://dx.doi.org/10.1063/1.2716355]

11.
K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Japanese Journal of Applied Physics, 45, 5S (2006).

12.
Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 516, 17 (2008). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.10.051]

13.
W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, and J. W, Thin Solid Films, 518, 22 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2010.03.028]

14.
J. H. Na, M. Kitamura, and Y. Arakawa, Applied Physics Letters, 93, 6 (2008).

15.
J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Applied Physics Letters, 93, 9 (2008).

16.
S. H. Rha, U. K. Kim, J. S. Jung, H. K. Kim, Y. S. Jung, E. S. Hwang, Y. J. Chung, M. J. Lee, J. H. Choi, and C. S. Hwang, Electron Devices, IEEE Transactions on, 60, 3 (2013). [DOI: http://dx.doi.org/10.1109/TED.2012.2236558]

17.
K. W. Jo, AND W, J. Cho, Applied Physics Letters, 105, 21 (2014).

18.
A. Suresh, and J. F. Muth, Applied Physics Letters, 92, 3 (2008). [DOI: http://dx.doi.org/10.1063/1.2824758]