JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution
Sin, Sang-Hoon; Yoo, Ju-Hyun;
  PDF(new window)
 Abstract
In this work, [] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of , , and were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of , . However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at showed the optimum values of piezoelectric constant(), piezoelectric figure of merit(), planar piezoelectric coupling coefficient() and density : [pC/N], , , , density=7.82 [], suitable for duplex ultrasonic sensor application.
 Keywords
PMW-PNN-PZT;PNN substitution;Piezoelectric properties;Low temperature sintering;
 Language
Korean
 Cited by
 References
1.
Y. H. Jeong, K. J. Yoo, and J. H. Yoo, J Electroceram., 23, 387 (2009). [DOI: http://dx.doi.org/10.1007/s10832-008-9473-7] crossref(new window)

2.
X. Chao, Z. Yang, M. Dong, and Y. Zhang, J. Magn. Magn. Mater., 323, 2012 (2011). [DOI: http://dx.doi.org/10.1016/j.jmmm.2011.02.048] crossref(new window)

3.
T. H. Shin, J. Y. Ha, H. C. Song, S. J. Yoon, H. H. Park, and J. W. Choi, Ceram. Int., 39, 1327 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.07.068] crossref(new window)

4.
J. Y. Ha, J. W. Choi, C. Y. Kang, D. J. Choi, H. J. Kim, and S. J. Yoon, Mater. Chem. Phys., 90, 396 (2005).[DOI: http://dx.doi.org/10.1016/j.matchemphys.2004.10.006] crossref(new window)

5.
K. H. Yoon, K. S. Kim, B. S. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 14, 20 (2001).

6.
J. H. Yoo, K. J. Kim, Y. H. Jeong, and S. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 766 (2007). [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.9.766]

7.
M. W. Lee, S. J. Kim, M. S. Yoon, S. L. Ryu, and S. Y. Kweon, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 1077 (2008). [DOI: http://dx.doi.org/10.4313/JKEM.2008.21.12.1077]

8.
K. S. Lee, I. H. Lee, J. H. Yoo, and S. L. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 1034-1038 (2007). [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.12.1034]

9.
T. Hu, J. Heli, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2004.00578.x] crossref(new window)

10.
S. Licht, H. Wu, C. Hettige, B. Wang, J. Asercion, J. Lau, J. Stuart, Electronic Supplementary Information (ESI), 1 (2012).

11.
G. M. Lee, J. Y. Lee, and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 690 (2015). [DOI: http://dx.doi.org/10.4313/JKEM.2015.28.11.690]