JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing
Shim, Ji-Hyun; Kim, Jeha;
  PDF(new window)
 Abstract
We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from to for a time period of 10 to 40 min. At , 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.
 Keywords
Tin sulfide (SnS);Rapid thermal process;Sulfurization;Elemental sulfur(S);Annealing temperature;
 Language
Korean
 Cited by
 References
1.
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, Phys. Status Solidi RRL, 9, 28 (2015). [DOI: http://dx.doi.org/10.1002/pssr.201409520] crossref(new window)

2.
J. Gifford, PV magazine, http://www.pv-magazine.com/news/details/beitrag/inside-tsmcs-165-cigs-module-worldrecord_100019430/#axzz3tQFcexg8 (2015).

3.
C. Waida, A . Paulalivisatos, and D. Kammen, Environ. Sci. Technol. 43, 2072 (2009). [DOI: http://dx.doi.org/10.1021/es8019534] crossref(new window)

4.
M. A. Greeen, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables. Prog. Photovoltaics Res Appl., 19, 565 (2011). [DOI: http://dx.doi.org/10.1002/pip.1150] crossref(new window)

5.
P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mat., 1400496 (2014).

6.
P. Sinsermsuksakul, K. Hartman, S. D. Kim, J. Heo, L. Sun, H. H. Park, R. Chakraborty, T. Buonassisi, and R. G. Gordon, Applied Physics Letters, 102. 053901 (2013). [DOI: http://dx.doi.org/10.1063/1.4789855] crossref(new window)

7.
W. K. Kim, E. A. Payzant, T. J. Anderson, and O. D. Crisalle, Thin Solid Films 515, 5837 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2006.12.173] crossref(new window)

8.
C. Cifuentes, M. Botero, E. Romero, C. Calderon, and G. Gordillo, Brazilian J. Phys., 36, 1046 (2006). [DOI: http://dx.doi.org/10.1590/S0103-97332006000600066] crossref(new window)