Advanced SearchSearch Tips
Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory
Baek, Il-Jin; Cho, Won-Ju;
  PDF(new window)
In this study, we developed the solution-processed PMMA- hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA- hybrid ReRAM were compared to those of PMMA- and -based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA- hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and -based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA- hybrid ReRAM and -based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA- films showed an excellent flexibility without defect generation.
ReRAM;Organic-Inorganic;Hybrid;Solution-process;Flexible electronics;
 Cited by
Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater., 24, 1844 (2012). [DOI:] crossref(new window)

S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi, IEEE Trans. Electron. Dev., 56, 4 (2009). [DOI:] crossref(new window)

C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature, 421, 829 (2003). [DOI:] crossref(new window)

G. Dennler and N. S. Sariciftci, Proceedings of the IEEE, 93, 1429 (2005). [DOI:] crossref(new window)

G. Darlinski, U. Bottger, and R. Waser, J. Appl. Phys., 97, 093708 (2005). [DOI:] crossref(new window)

M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, IEEE Electron Device Lett., 27, 249 (2006). [DOI:] crossref(new window)

J. Mangalam, S. Agarwal, A. N. Resmi, M. Sundararajan, and K. B. Jinesh, Organic Electronics, 29, 33 (2016). [DOI:] crossref(new window)

R. Huang, Y. Cai, Y. Liu, W. Bai, Y. Kuang, and T. Wang, Circuits and Systems, 838 (2014).

Z. Fan, D. Wang, J. G. Lu, X. Mo, C. Lou, Y. Yao, and G. Chen, In Nanotechnology, IEEE-NANO., 2, 588 (2003). [DOI:] crossref(new window)

H. T. Lin, Z. Pei, and Y. J. Chan, Electron Device Letters, IEEE, 28, 569 (2007). [DOI:] crossref(new window)

D. Basak, S. Karan, and B. Mallik, Solid State Commun. 141, 483 (2007). [DOI:] crossref(new window)

P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F T. Chen, and M. J. Tsai, Proceeding of the IEEE, 100, 1951 (2012). [DOI:] crossref(new window)

E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, Advanced Materials, 27, 6170 (2015) [DOI:] crossref(new window)

H. W. Shin, J. H. Park, H. Y. Chung, K. H. Kim, H. D. Kim, and T. G. Kim, Applied Physics Express, 7, 024202 (2014). [DOI:] crossref(new window)

I. Hwang, M. J. Lee, G. H. Buh, J. Bae, J. Choi, J. S. Kim, S. Hong, Y. S. Kim, I. S. Byun, S. W. Lee, S. E. Ahn, B. S. Kang, S. O. Kang, B. H. Park, Appl. Phys. Lett. 97, 052106 (2010). [DOI:] crossref(new window)

H. Jo, J. A. Lim, H .J. Chang and Y. S. Kim, Macromol. Rapid Commun., 34, 355 (2013). [DOI:] crossref(new window)

A. Ramadoss, K. Krishnamoorthy and S. J. Kim, Appl. Phy. Exp., 5, 085803 (2012). [DOI:] crossref(new window)