Advanced SearchSearch Tips
Characterization of Hot Electron Transistors Using Graphene at Base
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Hot Electron Transistors Using Graphene at Base
Lee, Hyung Gyoo; Kim, Sung Jin; Kang, Il-Suk; Lee, Gi Sung; Kim, Ki Nam; Koh, Jin Won;
  PDF(new window)
Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant between 0~1.2V, has increased linearly with for < indicating the saturation region. As the increases further, a plateau of vs. has appeared slightly at , denoting forward-active region. With further increase of , has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.
Graphene;Hot electron transistor;Tunneling;Schottky barrier;
 Cited by
Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures, Journal of Applied Physics, 2018, 123, 1, 014503  crossref(new windwow)
A. K. Geim and K. S. Novoselov, Nature Materials, 6, 183 (2007). [DOI:] crossref(new window)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N.M.R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko1, Science, 335, 947 (2012). [DOI:] crossref(new window)

A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Y. Kim, J. D. Fowler, J. K. Wassei, Y. J. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, ACS Nano, 5, 7812 (2011). [DOI:] crossref(new window)

C. Zeng, E. B. Song, M. Wang, S. J. Lee, C. M. TorresJr, J. Tang, B. H. Weiller, and Kang L. Wang, Nano Lett., 13, 2370 (2013). [DOI:] crossref(new window)

S. Vaziri, G. Lupina, C. Henkel, A. D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, and M. C. Lemme, Nano Lett., 13, 1435 (2013). [DOI:] crossref(new window)

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett., 10, 715 (2010). [DOI:] crossref(new window)

S. K. Bae, H. K. Kim, Y. B. Lee, X. Xu, J. S, Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nature nanotechnology, 5, 574 (2010). [DOI:] crossref(new window)

B. D. Kong, Z. Jin, and K. W. Kim, Phys. Rev. Appl., 2, 054006 (2014). [DOI:] crossref(new window)