JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optical Compensation of IPS-LCD for Symmetric-High-Contrast at Off-Axis Oblique View
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optical Compensation of IPS-LCD for Symmetric-High-Contrast at Off-Axis Oblique View
Kim, Tae-Hyeon; Kim, Bong-Sik; Park, Woo-Sang;
  PDF(new window)
 Abstract
In this study, we proposed an optical compensation method to improve the symmetricity of contrast ratio for wide viewing angle IPS (in-plane switching) LCD. First, the phase retardation depending on the thickness of compensation film is calculated, and then the phase change is presented at the sphere. The phase retardation and the polarization state of the light passing through the optical elements are caculated by using the EJMM (extended Jones matrix method). In addition, the transmittance and the contrast countour are also calculated by using the Berremann's matrix method. The simulation is carried out for a IPS LC cell with positive A/C/A compensation film. From the standard deviation of the contrast ratio, we confirmed the symmetricity at each viewing angle is inversely proportional to the standard deviation and calculated the optimum design condition of the uniaxial compensation film for the IPS LCD.
 Keywords
Liquid crystal display;In-plane switching;Viewing angle;Contrast ratio;Compensation film;
 Language
Korean
 Cited by
 References
1.
R. A. Soref, J. Appl. Phys., 45, 5466 (1974). [DOI: http://dx.doi.org/10.1063/1.1663263] crossref(new window)

2.
M. Oh-E, M. Ohta, S. Aratani, and K. Kondo, Proc. 15th Int. Display Research Conf. (Asia Display, 1995), p. 577.

3.
M. Oh-E and K. Kondo, Appl. Phys. Lett., 67, 3895 (1995). [DOI: http://dx.doi.org/10.1063/1.115309] crossref(new window)

4.
R. Herke, S. Jamal, and J. Kelly, J. Soc. Inf. Disp., 3, 9 (1995). [DOI: http://dx.doi.org/10.1889/1.1984935] crossref(new window)

5.
Q. Hong, T. X.Wu, X. Zhu, R. Lu, and S. -T.Wu, Appl. Phys. Lett., 86, 121107 (2005). [DOI: http://dx.doi.org/10.1063/1.1887815] crossref(new window)

6.
X. Zhu and S.-T. Wu, SID Int. Symp. Digest Tech., 36, 1164 (2005). [DOI: http://dx.doi.org/10.1889/1.2036208] crossref(new window)

7.
X. Zhu, Z. Ge, and S.-T. Wu, J. Disp. Technol., 2, 2 (2006). [DOI: http://dx.doi.org/10.1109/JDT.2005.863599] crossref(new window)

8.
Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, Jpn. J. Appl. Phys., 37, 4822 (1998). [DOI: http://dx.doi.org/10.1143/JJAP.37.4822] crossref(new window)

9.
A. Lien, Liq. Cryst., 22, 171 (1997). [DOI: http://dx.doi.org/10.1080/026782997209531] crossref(new window)

10.
A. Lien, Appl. Phys. Lett., 57, 2767 (1990). [DOI: http://dx.doi.org/10.1063/1.103781] crossref(new window)

11.
J. E. Bigelow and R. A. Kashnow, Appl. Opt., 16, 2090 (1977). [DOI: http://dx.doi.org/10.1063/1.103781] crossref(new window)

12.
D. W. Berreman, J. Opt. Soc. Am., 62, 502 (1972). [DOI: http://dx.doi.org/10.1364/JOSA.62.000502] crossref(new window)

13.
K. Vermeirsch, A. De Meyere, J. Fornier, and H. De Vleeschouwer, Appl. Opt., 38, 2775 (1999). [DOI: http://dx.doi.org/10.1364/AO.38.002775] crossref(new window)

14.
M. G. Robinson, J. Chen, and G. D. Sharp, Polarization Engineering for LCD Projection (John Wiley & Sons, New York, 2005) [DOI: http://dx.doi.org/10.1002/0470871075]

15.
P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999), p 136.