JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. I. Applied Voltage and Time
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. I. Applied Voltage and Time
Ham, Jae-Ho; Jeon, Min-Seok; Kim, Yong-Nam; Shin, Min Chul; Kim, Kwang Youp; Kim, Bae-Yeon;
  PDF(new window)
 Abstract
The surface of Mg alloy, AZ31 and AZ91, were treated by PEO (plasma electrolytic oxidation) in Na-P system electrolyte, with different applied voltage and time. Thickness, roughness and X-ray crystallographic analysis revealed several results. The more applied time and voltage of PEO treated, the thicker oxidized surface coating layer were covered. And surface roughness increased with the thickness of oxidized layer. It was thought that when oxide layer grew, resistivity and breakdown voltage increased with the thickness of layer, and then, the energy of micro plasma need to be higher then before. So, it made craters and pores of surface become greater, which were responsible for the coarse surface.
 Keywords
PEO;Oxidization;Mg alloy;Crystal structure;Electric properties;
 Language
Korean
 Cited by
 References
1.
B. L. Mordike and T. Ebert, Materials Science and Engineering, A302, 37 (2001). [DOI: http://dx.doi.org/10.1016/S0921-5093(00)01351-4] crossref(new window)

2.
G. L. Song and A. Atrens, Advanced Engineering Materials, 1002, 1 (1999).

3.
H. F. Guo, and M. Z. An, Thin Solid Films, 500, 186 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.11.045] crossref(new window)

4.
Y. Ma, X. Nie, D. O. Northwood, and H. Hu, Thin Solid Films, 494, 296 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.08.156] crossref(new window)

5.
A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coating Technology, 122, 73 (1999). [DOI: http://dx.doi.org/10.1016/S0257-8972(99)00441-7] crossref(new window)

6.
H. F. Guo, and M. Z. An, Applied Surface Science., 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031] crossref(new window)

7.
H. F. Guo, M. Z. An, S. Xu, H. Huo, Thin Solid Films, 485, 53 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.03.050] crossref(new window)

8.
H. F. Guo and M. Z. An, Applied Surface Science, 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031] crossref(new window)

9.
R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G. E Thompson, Corrosion Science, 50, 1744 (2008). [DOI: http://dx.doi.org/10.1016/j.corsci.2008.03.002] crossref(new window)

10.
A. V. Timoshenko and Y. V. Magurova, Surface and Coatings Technology, 199, 135 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.09.036] crossref(new window)

11.
J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Applied Surface Science, 252, 345 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.01.007] crossref(new window)

12.
Q. Cai, L. Wang, B. Wei, and Q. Liu,, Surface and Coatings Technology, 200, 3727 (2006). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2005.05.039] crossref(new window)

13.
H. Y. Hsiao, H. C. Tsung, and W. T. Tsai, Surface and Coatings Technology, 199, 127 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.12.010] crossref(new window)

14.
S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Corrosion. Science., 47, 1427 (2005). [DOI: http://dx.doi.org/10.1016/j.corsci.2004.07.038] crossref(new window)

15.
Y. G. Ko, E. S. Lee, and D. H. Shin, Journal of Alloys and Compounds, 586, S357 (2014). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.03.015] crossref(new window)

16.
Y. Ma, H. Hu, D. Northwood, and X. Nie, Journal of Materials Processing Technology, 182, 58 (2007). [DOI: http://dx.doi.org/10.1016/j.jmatprotec.2006.07.007] crossref(new window)

17.
H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Applied Surface Science, 252, 7911 (2006). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.09.067] crossref(new window)