Advanced SearchSearch Tips
Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. II. Electrolyte
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. II. Electrolyte
Ham, Jae-Ho; Jeon, Min-Seok; Kim, Yong-Nam; Shin, Hyun-Gyoo; Kim, Sung Youp; Kim, Bae-Yeon;
  PDF(new window)
Effect of electrolyte composition and concentration on PEO coating layer were investigated. Mg alloy, Surface of AZ31 and AZ91 were oxidized using PEO with different electrolyte system, Na-P and Na-Si. and applied voltage and concentration. We measured thickness, roughness, X-ray crystallographic analysis and breakdown voltage of the oxidized layer. When increasing concentration of electrolyte, the thickness of oxide layer also increased too. And roughness also increased as concentration of electrolyte increasing. Breakdown voltage of coated layer showed same behavior, the voltage goes high as increasing thickness of coating layer, as increasing concentration of electrolyte, and increasing applied voltage of PEO. phase were observed as well as MgO.
PEO;crystal structure;electrolyte;breakdown voltage;
 Cited by
A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coatings Technology, 122, 73 (1999). [DOI:] crossref(new window)

B. L. Mordike, and T. Ebert, Materials Science and Engineering, A302, 37 (2001). [DOI:] crossref(new window)

H. F. Guo, M. Z. An, S. Xu, and H. Huo, Thin Solid Films, 485, 53 (2006). [DOI:] crossref(new window)

H. F. Guo, and M. Z. An, Applied Surface Science, 246, 229 (2005). [DOI:] crossref(new window)

R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G. E Thompson, Corrosion Science, 50, 1744 (2008). [DOI:] crossref(new window)

A. V. Timoshenko, and Y. V. Magurova, Surface and Coatings Technology, 199, 135 (2005). [DOI:] crossref(new window)

J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, Applied Surface Science, 252, 345 (2005). [DOI:] crossref(new window)

Q. Cai, L. Wang, B. Wei, and Q. Liu, Surface and Coatings Technology, 200, 3727 (2006). [DOI:] crossref(new window)

H. Y. Hsiao, H. C. Tsung, and W. T. Tsai, Surface and Coatings Technology, 199, 127 (2005). [DOI:] crossref(new window)

S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Corrosion. Science., 47, 1427 (2005). [DOI:] crossref(new window)

Y. G. Ko, E. S. Lee, and D. H. Shin, Journal of Alloys and Compounds, 586, S357 (2014). [DOI:] crossref(new window)

Y. Ma, H. Hu, D. Northwood, and X. Nie, Journal of Materials Processing Technology, 182, 58 (2007). [DOI:] crossref(new window)

H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Applied Surface Science, 252, 7911 (2006). [DOI:] crossref(new window)

D. K. Lee, Y. H. Kim, H. Park, U. C. Jung, and W. S Chung, Journal of Korea Institute Surface Engineering, 42, 3 (2009).