JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films
Kim, Bo-Seok; Baik, Seung Jae;
  PDF(new window)
 Abstract
ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.
 Keywords
Chemical vapor deposition;ZnO;Ultraviolet;
 Language
Korean
 Cited by
 References
1.
A. Dev, A. Elshaer, and T. Voss, IEEE J. Selected Topics in Quantum Electronics, 17, 896 (2011). [DOI: http://dx.doi.org/10.1109/JSTQE.2010.2082506] crossref(new window)

2.
F. S. Hickernell, Proc. IEEE, 64, 631 (1976). [DOI: http://dx.doi.org/10.1109/PROC.1976.10187] crossref(new window)

3.
P. K. Samanta, S. Basak, and P. R. Chaudhuri, Materials Today, 14, 295 (2011). [DOI: http://dx.doi.org/10.1016/S1369-7021(11)70148-1] crossref(new window)

4.
N. F. Foster, G.A. Rozgonyi, Appl. Phys Lett, 8, 221 (1966). [DOI: http://dx.doi.org/10.1063/1.1754565] crossref(new window)

5.
O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schock, Thin Solid Films, 351, 247 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00085-1] crossref(new window)

6.
C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys., 95, 1911 (2004). [DOI: http://dx.doi.org/10.1063/1.1641524] crossref(new window)

7.
B. Rech and H. Wagner, Appl. Phys. A, 69, 155 (1999). [DOI: http://dx.doi.org/10.1007/s003390050986] crossref(new window)

8.
W. Kern and R. C. Heim, J. Electrochem. Soc., 117, 562 (1970). [DOI: http://dx.doi.org/10.1149/1.2407572] crossref(new window)

9.
S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, Sol. Energy Mater. & Sol. Cells, 86, 385 (2005). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.08.002] crossref(new window)

10.
S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, Thin Solid Films, 518, 2961 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.09.189] crossref(new window)

11.
S. Y. Myong, K. S. Lim, Appl. Phys. Lett., 82, 3026 (2003). [DOI: http://dx.doi.org/10.1063/1.1571651] crossref(new window)

12.
S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, Appl. Phys. Lett., 70, 3516 (1997). [DOI: http://dx.doi.org/10.1063/1.119218] crossref(new window)

13.
C. G. V. de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012] crossref(new window)

14.
L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Letters, 5, 1231 (2005). [DOI: http://dx.doi.org/10.1021/nl050788p] crossref(new window)

15.
X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys., 95, 3141 (2004). [DOI: http://dx.doi.org/10.1063/1.1646440] crossref(new window)

16.
P. K. Chakraborty, G. C. Datta, and K. P. Ghatak, Physica B: Condensed Matter, 339, 198 (2003). [DOI: http://dx.doi.org/10.1016/j.physb.2003.07.001] crossref(new window)