Advanced SearchSearch Tips
Influence of Shell on the Electrochemical Properties of Si Nanoparticle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of Shell on the Electrochemical Properties of Si Nanoparticle
Lee, Jeong-eun; Koo, Jeong-boon; Jang, Bo-yun; Kim, Sung-Soo;
  PDF(new window)
Effects of or C shells on electrochemical properties of Si nanoparticles were investigated. shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as and . C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.
Si nanoparticle; nanoparticle;Si-C nanoparticle;Electrochemical properties;
 Cited by
Stepwise carbon growth on Si/SiO x core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery’s anode, Electrochimica Acta, 2016, 222, 535  crossref(new windwow)
L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, ACS Nano., 47, 3671 (2010). [DOI:] crossref(new window)

C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chem. Soc., 39, 3115 (2010). [DOI:] crossref(new window)

H. Kim and Y. K. Sun, Materials Today., 17, 285 (2014). [DOI:] crossref(new window)

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano., 6, 1522 (2012). [DOI:] crossref(new window)

P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). [DOI:] crossref(new window)

H. Kim, M. Seo, M. H. Park, and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010). [DOI:] crossref(new window)

X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI:] crossref(new window)

Q. Si, M. Matsu, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources., 241, 744 (2013).[DOI:] crossref(new window)

T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, J. Solid State Chem., 153, 386 (2000). [DOI:] crossref(new window)

K. Homma, M. Kambara, and T. Yoshida, Sci. Technol. Adv. Mater., 15, 1 (2014). [DOI:] crossref(new window)

B. Y. Jang, J. S. Lee, C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2014).

J. Yang, Y. Takeda, N. Lmanish, C. Capiglia, and J. Y. Xie, Solid State Ionics., 152, 125 (2002). [DOI:] crossref(new window)

M. N. Obrovac and L. Christensen, Electrochem and Solid-State Lett., 7, A93 (2004). [DOI:] crossref(new window)

B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. EIectrochem. Soc., 128, 725 (1981). [DOI:] crossref(new window)

J. Guo, A. Suna, X. Chena, C. Wang, and A. Manivannan, Electrochimica Acta., 56, 3981 (2011). [DOI:] crossref(new window)

D. Dees, E. Gunen, D. Abraham, A. Jansen and J. Prakash, J. Electrochem soc., 152, A1409 (2005). [DOI:] crossref(new window)