JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries
Kong, Ming Zhe; Nguyen, Van Hiep; Gu, Hal-Bon;
  PDF(new window)
 Abstract
In this work, and cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type . has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.
 Keywords
Capacity;Energy density; (50:50 wt%);Accumulated capacity;
 Language
Korean
 Cited by
 References
1.
G. H. Waller, J. Power Sources, 306, 162 (2016). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2015.11.114] crossref(new window)

2.
T.Y.S.P. Putra, M. Yonemura, S. Torii, T. Ishigaki, and T. Kamiyama, Solid State Ionics, 262, 83 (2014). [DOI: http://dx.doi.org/10.1016/j.ssi.2013.10.049] crossref(new window)

3.
Y. Nishi, J. Power Sources, 100, 101 (2001). [DOI: http://dx.doi.org/10.1016/S0378-7753(01)00887-4] crossref(new window)

4.
M. M. Thackeray, Solid State Chemistry, 25, 1 (1997). [DOI: http://dx.doi.org/10.1016/S0079-6786(97)81003-5] crossref(new window)

5.
K. Du, G. R. Hu, Z. D. Peng, and L. Qi, Electrochemica Acta, 55, 1733 (2010). [DOI: http://dx.doi.org/10.1016/j.electacta.2009.10.058] crossref(new window)

6.
Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, Q. Y. Hu, W. J. Peng, and Y. Yang, J. Power Sources, 189, 721 (2009). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.08.044] crossref(new window)

7.
H. S. Kim, M. Z. Kong, K. T. Kim, I. J. Kim, and H. B. Gu, J. Power Sources, 171, 917 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.06.028] crossref(new window)

8.
N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003). [DOI: http://dx.doi.org/10.1016/S0378-7753(03)00173-3]

9.
H. J. Guo, R. F. Liang, X. H. Li, X. M. Zhang, Z. X. Wang, W. J. Peng, and Z. Wang, Trans. Nonferrous Met. Soc. China, 17, 1307 (2007). [DOI: http://dx.doi.org/10.1016/S1003-6326(07)60267-2] crossref(new window)

10.
M. Z. Kong, H. S. Kim, and K. T. Kim, Proc. of KIEEME Autumn Conference, 19, 214 (2006).

11.
H. S. Kim, S. I. Kim, and W. S. Kim, Electrochemica Acta, 52, 1457 (2006). [DOI: http://dx.doi.org/10.1016/j.electacta.2006.02.045] crossref(new window)