JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Properties of GaN Film Grown on AlN/PSS Template by Hydride Vapor Phase Epitaxy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Properties of GaN Film Grown on AlN/PSS Template by Hydride Vapor Phase Epitaxy
Son, Hoki; Lee, YoungJin; Lee, Mijai; Kim, Jin-Ho; Jeon, Dae-Woo; Hwang, Jonghee; Lee, Hae-Yong;
  PDF(new window)
 Abstract
In this paper, GaN film was grown on AlN/PSS by hydride vapor phase epitaxy compared with GaN on planar sapphire. Thin AlN layer for buffer layer was deposited on patterned sapphire substrate (PSS) by metal organic chemical vapor deposition. Surface roughness of GaN/AlN on PSS was remarkably decreased from 28.31 to 5.53 nm. Transmittance of GaN/AlN grown on PSS was lower than that of planar sapphire at entire range. XRD spectra of GaN/AlN grown on PSS corresponded the wurzite structure and c-axis oriented. The full width at half maximum (FWHM) values of -scan X-ray rocking curve (XRC) for GaN/AlN grown on PSS were 196 and 208 arcsec for symmetric (0 0 2) and asymmetric (1 0 2), respectively. FWHM of GaN on AlN/PSS was improved more than 50% because of lateral overgrowth and AlN buffer effect.
 Keywords
GaN;PSS;HVPE;Refractive index;
 Language
Korean
 Cited by
 References
1.
M. Balaji, A. Claudel, V. Fellmann, I. Gelard, E. Blanquet, R. Boichot, A. Pierret B. Attal-Tretout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, and M. Pons, J. Alloy. Compd., 526, 103 (2012). [DOI: http://dx.doi.orgorg/10.1016/j.jallcom.2012.02.111] crossref(new window)

2.
K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status. Solidi. C, 5, 1483 (2011). [DOI: http://dx.doi.orgorg/10.1002/pssc.201001130]

3.
H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status. Solidi. C, S5, S356 (2009). [DOI: http://dx.doi.orgorg/10.1002/pssc.200880958]

4.
T. Nagashima, M. Harada, H. Yanagi, H. Fukuyama, Y. Kumagai, A. Koukitu, and K. Takada, J. Cryst. Growth, 305, 355 (2007). [DOI: http://dx.doi.orgorg/10.1016/j.jcrysgro.2007.04.001] crossref(new window)

5.
Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, and A. Koukitu, J. Cryst. Growth, 312, 2530 (2010). [DOI: http://dx.doi.orgorg/10.1016/j.jcrysgro.2010.04.008] crossref(new window)

6.
K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status. Solidi. C, 8, 1483 (2011). [DOI: http://dx.doi.orgorg/10.1002/pssc.201001130] crossref(new window)

7.
V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B, 58, 12899 (1998). [DOI: http://dx.doi.orgorg/10.1103/PhysRevB.58.12899] crossref(new window)

8.
W. H. Yan, L. Z. Ting, H. J. Lei, Z. L. Yi, and L. G. Qiang, Chin. Phys. B, 24, 067103 (2015). [DOI: http://dx.doi.orgorg/10.1088/1674-1056/24/6/067103] crossref(new window)

9.
H. Y. Shin, Y. I. Chang, S. K. Kwon, K. T. Lee, M. J Cho, and K. H. Park, J. Korean Phys. Soc., 50, 1147 (2007). [DOI: http://dx.doi.orgorg/10.3938/jkps.50.1147] crossref(new window)

10.
K. H. Chang, M. S. Kwon, and S. I. Cho, J. Institute of Industrial Technology, 12, 123 (2004).

11.
G. El-Zammar, W. Khalfaoui, T. Oheix, A. Yvon, E. Collard, F. Cayrel, and D. Alquier, Appl. Surf. Sci., 355, 1044 (2015). [DOI: http://dx.doi.orgorg/10.1016/j.apsusc.2015.07.201] crossref(new window)

12.
S. R. Xu, P. X. Li, J. C. Zhang, T. Jiang, J. J. Ma, Z. Y. Lin, and Y. Hao, J. Alloy. Comp., 614, 360 (2014). [DOI: http://dx.doi.orgorg/10.1016/j.jallcom.2014.06.113] crossref(new window)

13.
M. Alevil, C. Ozgit, I. Donmez, and N. Biyikli, J. Vac. Sci. Technol A, 30, 021506 (2012). [DOI: http://dx.doi.orgorg/10.1116/1.3687937] crossref(new window)

14.
C. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.orgorg/10.1063/1.1449523] crossref(new window)

15.
D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett., 83, 28 (2003).