Advanced SearchSearch Tips
Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor
Lee, Seokhwan; Koo, Jieun; Lee, Moonjin; Jung, Jung-Yeul; Chang, Jiho;
  PDF(new window)
In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.
Indium Tin Oxide;Gas sensor;Fire sensor;
 Cited by
S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, Advanced Functional Materials, 21, 4464 (2010). [DOI:]

M. Batzill, Sensors, 6, 1345 (2006). [DOI:] crossref(new window)

H. Chen, H. Linfeng F. Xiaosheng, and W. Limin, Advanced Functional Materials, 22, 1229 (2012). [DOI:] crossref(new window)

L. Qin, P. S. Dutta, and S. Sawyer, Semicond. Sci. Technol., 27, 045005 (2012). [DOI:] crossref(new window)

M. Batzill and D. Ulrike, Prog. Surf. Sci., 79, 47 (2005). [DOI:] crossref(new window)

V. Elena, P. M. Laurence, F. Fresnel, J. R. James, G. Bernardo, W. Hongxia, C. Larisa, and D. Halina, Sensors and Actuators A: Physical, 171, 87 (2011). [DOI: Diebold] crossref(new window)

M. Nistor, J. Perriere, C. T. Heber, and W. Seiler, Journal of Physics. Condensed Matter : an Institute of Physics, 22, 045006 (2010). [DOI:] crossref(new window)

J. Koo, S. Park, W. Lee, Y. Cho, H. Lee, S. Lee, and J. Chang, Physica Status Solidi C, 10, 873 (2013). [DOI:] crossref(new window)

F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science, 265, 1684 (1994). [DOI:] crossref(new window)

Z. Bao, Y. Fen, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, Chem. Mater., 9, 1299 (1997). [DOI:] crossref(new window)

H. Lee and Y. Chang, Polymer Science and Technology, 22, 237 (2011). crossref(new window)

S. H. Lee, J. Koo, S. Jung, M. Lee, J. Y. Jung, and J. Chang, Proc. of SPIE 9655, Fifth Asia-Pacific Optical Sensors Conference, 96553 (2015). [DOI:] crossref(new window)

M. Fang, A. Andrey, K. V. Rao, K. A. Andrei, and B. Lyubov, RSC Advances, 3, 19501 (2013). [DOI:] crossref(new window)

E. M. Harnett, J. Alderman, and T. Wood, Colloids and Surfaces B: Biointerfaces, 55, 90 (2007) [DOI:] crossref(new window)

M. Y. Lee, Ph. D. Thesis, Pukyong National University, Seoul (2008).

S. Nam, The Monthly Packaging World, 209, 58 (2010).

S.S.N. Bharadwaja, C. Venkatasubramanian, N. Fieldhouse, S. Ashok, M. W. Horn, and T. N. Jackson, Appl. Phys. Lett., 94, 222110 (2009). [DOI:] crossref(new window)