JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption
Lee, Sojin; Jang, Kyungsoo; Nguyen, Cam Phu Thi; Kim, Taeyong; Yi, Junsin;
  PDF(new window)
 Abstract
The silicon dioxide () was deposited using various gas as oxygen and nitrous oxide () in nowadays. In order to improve electrical characteristics and the interface state density () in low temperature, It was deposited with carbon dioxide () and silane () gas by inductively coupled plasma chemical vapor deposition (ICP-CVD). Each of using and gas was and . It showed using gas was about 2.55 times better than gas. After 10 years when the thin film was applied to metal/insulator/semiconductor(MIS)-nonvolatile memory(NVM), MIS NVM using () on tunneling layer had window memory of 2.16 V with 60% retention at bias voltage from +16 V to -19 V. However, MIS NVM applied () to tunneling layer had 2.48 V with 61% retention at bias voltage from +20 V to -24 V. The results show using decrease the and it improves the operating voltage.
 Keywords
;NVM;ONO structure;Tunnel oxide;Tunneling;
 Language
Korean
 Cited by
 References
1.
A. Chen, Solid State Device Research Conference 2015 45th European (eds. W. Pribyl, T. Grasser and M. Schrems) (IEEE, 2015) p. 109

2.
M. A. Beunder, R. V. Kampen, D. Lacey, M. Renault, and C. G. Smith, Non-Volatile Memory Technology Symposium 2005 (IEEE, 2005) p. 65

3.
C. H. Cheng, F. S. Yeh, and A. Chin, Adv. Mater., 23, 902 (2011). [DOI: http://dx.doi.org/10.1002/adma.201002946] crossref(new window)

4.
H. C Card and M. I. Elmasry, Solid-State Electronics, 19, 863 (1976). [DOI: http://dx.doi.org/10.1016/0038-1101(76)90044-7] crossref(new window)

5.
Y. C. King, Y. J. King, and C. Hu, IEEE Electron Devices Lett., 20, 409 (1999). [DOI: http://dx.doi.org/10.1109/55.778160] crossref(new window)

6.
H. T. Chen, S. I. Hsieh, C. J. Lin, and Y. C. King, IEEE Electron Devices Lett., 28, 499 (2007). [DOI: http://dx.doi.org/10.1109/LED.2007.896894] crossref(new window)

7.
J. H. Joo, J. Kor. Inst. Surf. Eng., 41, 279 (2008). [DOI: http://dx.doi.org/10.5695/JKISE.2008.41.6.279] crossref(new window)

8.
D. L. Smith and A. S. Alimonda, J. Electronchem. Soc., 140, 1496 (1993). crossref(new window)

9.
K. Radouane, L. Date, M. Yousfi, B. Despax, and H. Caquineau, J. Phys. D: Appl. Phys., 33, 1332 (2000). [DOI: http://dx.doi.org/10.1088/0022-3727/33/11/312] crossref(new window)

10.
M. I. Alayo, I. Pereyra, W. L. Scopel, and M.C.A. Fantini, Thin Solid Films, 402, 154 (2002). [DOI: http://dx.doi.org/10.1016/S0040-6090(01)01685-6] crossref(new window)

11.
G. Lucovsky, Z. Jing, and D. R. Lee, J. Vac. Sci. Technol. B, 14, 2832 (1996). [DOI: http://dx.doi.org/10.1116/1.588841] crossref(new window)

12.
B. Holm, T. Ahuja, A. Belonoshko, and B. Johansson, Phys. Rev. Lett., 85, 1259 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1258]

13.
M. T. Lee, C. H. Liu, and K. Y. Fu, http://www.google.com/patent/US6268269#backward-citations (1999).

14.
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley and Sons, New York, 1982)

15.
J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415 (1984). [DOI: http://dx.doi.org/10.1063/1.94794] crossref(new window)

16.
K. F. Albertin and I. Pereyra, Microelectronic Engineering, 77, 144 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.10.002] crossref(new window)

17.
C. Y. Kim, S. H. Kim, R. Navamathavan, C. K. Choi, and W. Y. Jeung, Thin Solid Film, 516, 340 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.06.097] crossref(new window)

18.
M. Suzuki, T. Yamaguchi, N. Fukushima, and M. Koyama, J. Appl. Phys., 103, 034118 (2008). [DOI: http://dx.doi.org/10.1063/1.2838470] crossref(new window)