JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Operating Characteristics of Amorphous GeSe-based Resistive Random Access Memory at Metal-Insulator-Silicon Structure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Operating Characteristics of Amorphous GeSe-based Resistive Random Access Memory at Metal-Insulator-Silicon Structure
Nam, Ki-Hyun; Kim, Jang-Han; Chung, Hong-Bay;
  PDF(new window)
 Abstract
The resistive memory switching characteristics of resistive random access memory (ReRAM) using the amorphous GeSe thin film have been demonstrated at Al/Ti/GeSe/ poly Si structure. This ReRAM indicated bipolar resistive memory switching characteristics. The generation and the recombination of chalcogen cations and anions were suitable to explain the bipolar switching operation. Space charge limited current (SCLC) model and Poole-Frenkel emission is applied to explain the formation of conductive filament in the amorphous GeSe thin film. The results showed characteristics of stable switching and excellent reliability. Through the annealing condition of , the possibility of low temperature process was established. Very low operation current level (set current: ~ , reset current: ~ nA) was showed the possibility of low power consumption. Particularly, poly Si based GeSe ReRAM could be applied directly to thin film transistor (TFT).
 Keywords
ReRAM;Metal-insulator-silicon;GeSe;
 Language
Korean
 Cited by
 References
1.
H. Y. Jeong and J. Y. Lee, Physica Status Solidi, 4, 28 (2010). [DOI: http://dx.doi.org/10.1002/pssr.200903383] crossref(new window)

2.
D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. and Solid-State Lett., 10, G51 (2007). [DOI: http://dx.doi.org/10.1149/1.2742989] crossref(new window)

3.
E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nature Materials, 9, 403 (2010). [DOI: http://dx.doi.org/10.1038/nmat2748] crossref(new window)

4.
M. Mitkova and M. N. Kozicki, J. Non-cryst. Sol., 299, 1023 (2002).

5.
Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, Appl. Phys. Lett., 104, 114514 (2008).

6.
S. H. Won and K. W. Lee, Electron. Mater. Lett., 4, 29 (2008).

7.
S. Spiga, A. Lamperti, C. Wiemer, M. Perego, E. Cianci, G. Tallarida, H. L. Lu, M. Alia, F. G. Volpe, and M. Fanciulli, Microelectron. Eng., 82, 2414 (2008). [DOI: http://dx.doi.org/10.1016/j.mee.2008.09.018]

8.
Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, J. Appl. Phys., 104, 114514 (2008). [DOI: http://dx.doi.org/10.1063/1.3033561] crossref(new window)

9.
M. Kastner, D. Adler and H. Fritzsche, Physical Review Lett., 37, 1504 (1976). [DOI: http://dx.doi.org/10.1103/PhysRevLett.37.1504] crossref(new window)

10.
R. C. Frye and D. Adler, Physical Review B, 24, 5812 (1981). [DOI: http://dx.doi.org/10.1103/PhysRevB.24.5812] crossref(new window)

11.
J. Sworakowski, J. Appl. Phys., 51, 4 (1980).

12.
R. H. Parmenter and W. Ruppel, J. Appl. Phys., 30, 1548 (1959). [DOI: http://dx.doi.org/10.1063/1.1734999] crossref(new window)

13.
M. H. Robert, Philosophical Magazine, 23, 181 (1971).