JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films
Yoon, Hoi Jin; Bang, Ki Su; Lee, Seung-Yun;
  PDF(new window)
 Abstract
The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.
 Keywords
Phase-change;Chalcogenide;Semitransparent thin film solar cells;Transmittance;Color;
 Language
Korean
 Cited by
 References
1.
S. R. Elliott, Int. J. Appl. Glass Sci., 6, 15 (2015). [DOI: http://dx.doi.org/10.1111/ijag.12107] crossref(new window)

2.
M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and Din Ping Tsai, Opt. Express, 19, 16975 (2011). [DOI: http://dx.doi.org/10.1364/OE.19.016975] crossref(new window)

3.
J. W. Lim, S. J. Yun, and S. Y. Lee, Korean Patent, 10-2012-0144271 (2012).

4.
J. Benemann, O. Chehab, and E. Schaar-Gabriel, Sol. Energ. Mat. Sol. C., 67, 345 (2001). [DOI: http://dx.doi.org/10.1016/S0927-0248(00)00302-0] crossref(new window)

5.
M. Fang, Q. Li, and F. Gan, J. Mater. Sci. Technol., 20, 509 (2004).

6.
J. Li, F. Gan, Z. Gu, Q. Xie, H. Ruan, and P. Liang, Opt. Mater., 14, 337 (2000). [DOI: http://dx.doi.org/10.1016/S0925-3467(00)00008-2] crossref(new window)

7.
S. Y. Lee, S. H. Choi, J. Y. Kang, and C. O. Park, J. Appl. Phys., 88, 5946 (2000). [DOI: http://dx.doi.org/10.1063/1.1288783] crossref(new window)

8.
S. H. Lee, S. J. Yun, M. Shin, and J. W. Lim, Sol. Energ. Mat. Sol. C., 117, 519 (2013). [DOI: http://dx.doi.org/10.1016/j.solmat.2013.07.029] crossref(new window)

9.
S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: http://dx.doi.org/10.1007/s11664-014-3286-z] crossref(new window)