JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of Ag Nanowire Patterning Process Using Sacrificial Layer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of Ag Nanowire Patterning Process Using Sacrificial Layer
Ha, Bonhee; Jo, Sungjin;
  PDF(new window)
 Abstract
We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.
 Keywords
Ag nanowire;Sacrificial layer;Germanium oxide;SU-8;
 Language
Korean
 Cited by
 References
1.
J. A. Jeong, H. K. Kim, and J. Kim, Sol. Energ. Mat. Sol. C., 125, 113 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.003] crossref(new window)

2.
Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Muller-Meskamp, and K. Leo, Adv. Funct. Mater., 23, 3763 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201203449] crossref(new window)

3.
S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, J. J. Kim, and J. W. Kang, Adv. Energy. Mater., 4, 1300474 (2014). crossref(new window)

4.
X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, and Z. Xie, Sol. Energ. Mat. Sol. C., 244, 143 (2016). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.08.039]

5.
A. Catheline, F. Paolucci, G. Valenti, P. Poulin, and A. Penicaud, J. Mater. Res., 30, 2009 (2015). [DOI: http://dx.doi.org/10.1557/jmr.2015.166] crossref(new window)

6.
M. J. Cha, S. M. Kim, S. J. Kang, J. H. Seo, and B. Walker, RSC Adv., 5, 65646 (2015). [DOI: http://dx.doi.org/10.1039/C5RA10838A] crossref(new window)

7.
S. E. Park, S. Kim, D. Y. Lee, E. Kim, and J. Hwang, J. Mater. Chem. A, 1, 14286 (2013). [DOI: http://dx.doi.org/10.1039/c3ta13204h] crossref(new window)

8.
Y. Ahn, H. Lee, D. Lee, and Y. Lee, ACS Appl. Mater. Interfaces, 6, 18401 (2014). [DOI: http://dx.doi.org/10.1021/am504462f] crossref(new window)

9.
M. S. Kim, D. H. Lee, K. B. Kim, S. H. Jung, J. K. Lee, O. Beom-Hoan, S. G. Lee, and S. G. Park, Thin Solid Films, 587, 100 (2015). [DOI: http://dx.doi.org/10.1016/j.tsf.2015.02.028] crossref(new window)

10.
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano. Res., 3, 564 (2010). [DOI: http://dx.doi.org/10.1007/s12274-010-0017-5] crossref(new window)

11.
S. J. Henley, M. Cann, I. Jurewicz, A. Dalton, and D. Milne, Nanoscale, 6, 946 (2014). [DOI: http://dx.doi.org/10.1039/C3NR05504C] crossref(new window)

12.
Z. Tan, W. Shi, C. Guo, Q. Zhang, L. Yang, X. Wu, G. Cheng, and R. Zheng, Nanoscale, 7, 17268 (2015). [DOI: http://dx.doi.org/10.1039/C5NR02876K] crossref(new window)

13.
H. Oh, and M. Lee, Mater. Lett., 176, 110 (2016). [DOI: http://dx.doi.org/10.1016/j.matlet.2016.04.098] crossref(new window)

14.
C. Chung, and M. Allen, J. Micromech. Microeng., 15, N1 (2005). [DOI: http://dx.doi.org/10.1088/0960-1317/15/1/021] crossref(new window)

15.
D. E. Pesantez, E. K. Amponsah, and A. P. Gadre, Sens Actuators. B Chem., 132, 426 (2008). [DOI: http://dx.doi.org/10.1016/j.snb.2007.10.060] crossref(new window)

16.
T. Sameshima, K. Yoshioka, and K. Takechi, Jpn. J. Appl. Phys., 44, 6421 (2005). [DOI: http://dx.doi.org/10.1143/JJAP.44.6421] crossref(new window)