JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application
Kim, Hyung Ki; Lim, Sungjoon;
  PDF(new window)
 Abstract
In this paper, a novel flexible microfluidic metamaterial absorber is proposed for remote chemical sensor applications. The proposed metamaterial absorber consists of a periodic of split-ring-cross resonators(SRCRs) and a microfluidic channel. The SRCR patterns are inkjet-printed using silver nanoparticle inks on paper. The microfluidic channels are laser-etched on polydimethylsiloxane(PDMS) material. The proposed absorber can detect change of the effective permittivity at different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting change of the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results shows that the resonant frequency is 10.49 GHz at the empty channel. When ethanol and DI-water are injected into the channel, the resonant frequencies are 10.04 GHz and 8.9 GHz, respectively.
 Keywords
Metamaterial Absorber;Frequency-Tunable Absorber;Microfluidics;Chemical Sensor;Split Ring Cross Resonator(SRCR);
 Language
Korean
 Cited by
 References
1.
G. Wen, X. Wen, S. Shung, and M. Choi, "Whole-cell biosensor for determination of methanol", Sensors Actuators B: Chem., vol. 201, no. 1, pp. 586-591, Oct. 2014.

2.
N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, no. 20, p. 207402, May 2008. crossref(new window)

3.
F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, "Mechanically stretchable and tunable metamaterial absorber", Appl. Phys. Lett., vol. 106, no. 9, p. 091907, Mar. 2015. crossref(new window)

4.
R. Melik, E. Unal, N. Perkgoz, C. Puttlitz, and H. Demir, "Metamaterial-based wireless strain sensors", Appl. Phys. Lett., vol. 95, no. 1, p. 011106, Jul. 2009. crossref(new window)

5.
E. Verpoorte, B. Schoot, S. Jeanneret, A. Manz, H. Widmer, and N. Rooij, "Three-dimensional micro flow manifolds for miniaturized chemical analysis systems", J. Micromech. Microeng., vol. 4, no. 4, p. 246, Oct. 1994. crossref(new window)

6.
G. Doku, S. Haswell, "Further studies into the development of a micro-fia system based on electroosmotic flow for the determination of phosphate as orthophosphate", Anal. Chim. Acta, vol. 382, no. 1, p. 1, Feb. 1999. crossref(new window)

7.
I. Dimov, L. Basabe-Desmonts, J. Garcia-Cordero, B. Ross, A. Ricco, and L. Lee, "Stand-alone self-powered integrated microfluidic blood analysis system(SIMBAS)", Lab on a Chip, vol. 11, no. 5, pp. 845-850, Mar. 2011. crossref(new window)

8.
E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrates: Design and application to bioassays", J. Am. Chem. Soc., vol. 120, no. 3, pp. 500-508, Jan. 1998. crossref(new window)

9.
A. Martinez, S. Phillips, G. Whitesides, and E. Carrilho, "Diagnostics for the developing world: Microfluidic paper-based analytical devices", Anal. Chem., vol. 82, no. 1, pp. 3-10, Jan. 2010. crossref(new window)

10.
K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Anal. Chem., vol. 80, no. 18, pp. 6928-6934, Sep. 2008. crossref(new window)

11.
B. Cook, J. Cooper, and M. Tentzeris, "An inkjet-printed microfluidic RFID-enabled platform for wireless lab-on-chip applications", IEEE Trans. on Microw. Theo. and Tech., vol. 61, pp. 4714-4723, Nov. 2013. crossref(new window)

12.
J. Mateu, N. Orloff, M. Rinehart, and J. Booth, "Broadband permittivity of liquids extracted from transmission line measurements of microfluidic channels", IEEE/MTT-S International Microwave Symposium, pp. 523-526, Jun. 2007.

13.
T. Chretiennot, D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions", IEEE Trans. on Microw. Theo. and Tech., vol. 61, no. 2, pp. 972-978, Dec. 2012.

14.
G. Hayes, J. So, A. Qusba, M. Dickey, and G. Lazzi, "Flexible liquid metal alloy(EGaIn) microstrip patch antenna", IEEE Trans. on Ant. and Prop., vol. 60, no. 5, pp. 2151-2156, Apr. 2012. crossref(new window)

15.
N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, "Design, theory, and measurement of a polarization-insentive absorber for terahertz imaging", Phys. Rev. B, vol. 79, no. 12, p. 125104, Mar. 2009. crossref(new window)

16.
W. Withayachumnankul, C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials", Optics Express, vol. 18, no. 25, pp. 25912-25921, Dec. 2010. crossref(new window)

17.
S. Kim, C. Moriotti, F. Alimenti, P. Mezzanotte, A. Georgiadis, A. Collado, L. Roselli, and M. Tentzeris, "No battery required: perpetual RFID-enabled wireless sensors for cognitive intelligence applications", IEEE Microw. Mag., vol. 14, no. 5, p. 66, Jul. 2013.