JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma
Lee, Hyunjae; Jung, Inkyun; Ha, Jungje; Shin, Woongjae; Yang, Jin Mo; Lee, Yongshik; Yook, Jong-Gwan;
  PDF(new window)
 Abstract
In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.
 Keywords
Monostatic RCS;Metallic Plate;DBD Plasma;
 Language
Korean
 Cited by
 References
1.
하정제, 신웅재, 이현재, 홍용준, 이용식, 육종관, "Dielectric- barrier-discharge 기반 Plasma의 전자파 반사 감 소 가능성 연구", 한국전자파학회 하계종합학술대회, 2015년 8월.

2.
J. H. Oh, K. S. Oh, C. G. Kim, and C. S. Hong, "Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges", Composites Part B: Engineering, vol. 35, no. 1, pp. 49-56, 2004.

3.
W. S. Chin, "Development of the composite RAS(radar absorbing structure) for the X-band frequency range", Composite Structures, vol. 77, no. 4, pp. 457-465, 2007. crossref(new window)

4.
정인균, 김유나, 홍용준, 육종관, "얇은 플라즈마층의 전자기 해석을 위한 Subcell 맥스웰-볼츠만 유한 차분 시간 영역 기법", 한국전자파학회논문지, 26(3), pp. 326- 332, 2015년 3월.

5.
B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using threedimensional computations", IEEE Trans. on Plasma Science, vol. 37, no. 11, pp. 2116-2127, 2009. crossref(new window)

6.
X. P. Lu, M. Laroussi, "Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer", Applied Physics Letters, vol. 92, no. 5, pp. 51501-51501. 2008. crossref(new window)

7.
이수민, 오일영, 홍용준, 육종관, "유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석", 한국전자파학회논문지, 24(3), pp. 324-330, 2013년 3월.

8.
Christer Larsson, Mats Gustafsson, and Gerhard Kristensson, "Wideband microwave measurements of the extinction cross section-Experimental techniques", Technical Report LUTEDX/(TEAT-7182)/1-22, 2009.

9.
E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section: Its Prediction, Measurements and Reduction, Massachusetts: Artech House, 1985.

10.
A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources", IEEE Trans. on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.

11.
R. A. Ross, "Radar cross section of rectangular flat plates as a function of aspect angle", IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 329-335, 1966. crossref(new window)

12.
H. Shirai, T. Ishikawa, and Y. Watanabe, "A study of radar cross‐section measurements in an anechoic chamber", Electrical Engineering in Japan, vol. 123, no. 1, pp. 8-14, 1998.

13.
A. A. Fridman, L. A. Kennedy, Plasma Physics and Engineering: CRC, 2004.

14.
김유나, 오일영, 정인균, 홍용준, 육종관, "유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파간의 시간 의존적 상호 작용 분석", 한국전자파학회논문지, 25(8), pp. 857-863, 2014년 8월.