Advanced SearchSearch Tips
Preparation of Porous PLGA Microfibers Using Gelatin Porogen Based on a Glass Capillary Device
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preparation of Porous PLGA Microfibers Using Gelatin Porogen Based on a Glass Capillary Device
Kim, Chul Min; Kim, Gyu Man;
  PDF(new window)
We present a method of fabricating poly (lactic-co-glycolic acid) (PLGA) porous microfibers using a pore template. PLGA microfibers were synthesized using a glass capillary tube in a poly-(dimethylsiloxane) (PDMS) microfluidic chip. Gelatin solution was used as a porous template to prepare pores in microfibers. Two phases of PLGA solutions in different solvents-DMSO (dimethyl sulfoxide) and DCM (dichloromethane)-were used to control the porosity and strength of the porous microfibers. The porosity of the PLGA microfibers differed depending on the ratio of flow rates in the two phases. The porous structure was formed in a spiral shape on the microfiber. The porous structure of the microfiber is expected to improve transfer of oxygen and nutrients, which is important for cell viability in tissue engineering.
Glass capillary tube;Gelatin;Porous fiber;Microfluidic system;PLGA;
 Cited by
Khademhosseini, A., Langer, R., Borenstein, J., and Vacanti, J. P., "Microscale Technologies for Tissue Engineering and Biology," Proc. of the National Academy of Sciences of the United States of America,Vol. 103, No. 8, pp. 2480-2487, 2006. crossref(new window)

Mooney, D. J. and Vandenburgh, H., "Cell Delivery Mechanisms for Tissue Repair," Cell Stem Cell, Vol. 2, No. 3, pp. 205-213, 2008. crossref(new window)

Patrick Jr, C. W., Chauvin, P. B., Hobley, J., and Reece, G. P., "Preadipocyte Seeded PLGA Scaffolds for Adipose Tissue Engineering," Tissue Engineering, Vol. 5, No. 2, pp. 139-151, 1999. crossref(new window)

Holy, C. E., Cheng, C., Davies, J. E., and Shoichet, M. S., "Optimizing the Sterilization of PLGA Scaffolds for Use in Tissue Engineering," Biomaterials, Vol. 22, No. 1, pp. 25-31, 2000. crossref(new window)

Astete, C. E. and Sabliov, C. M., "Synthesis and Characterization of PLGA Nanoparticles," Journal of Biomaterials Science, Vol. 17, No. 3, pp. 247-289, 2006. crossref(new window)

Kim, H. G., Kim, K. M., Kim, Y. H., Lee, S. H., and Kim, G. M., "Preparation of Monodisperse ENXLoaded PLGA Microspheres Using a Microfluidic Flow-Focusing Device," Journal of Biobased Materials and Bioenergy, Vol. 7, No. 1, pp. 108-114, 2013. crossref(new window)

Ryu, T.-K., Oh, M.-J., Moon, S.-K., Paik, D.-H., Kim, S.-E., et al., "Uniform Tricalcium Phosphate Beads with an Open Porous Structure for Tissue Engineering," Colloid Surface B: Biointerfaces, Vol. 112, No. 12, pp. 368-373, 2013.

Hwang, C. M., Khademhosseini, A., Park, Y., Sun, K., and Lee, S.-H., "Microfluidic Chip-Based Fabrication of PLGA Microfiber Scaffolds for Tissue Engineering," Langmuir, Vol. 24, No. 13, pp. 6845-6851, 2008. crossref(new window)

Astaneh, R., Erfan, M., Moghimi, H., and Mobedi, H., "Changes in Morphology of in Situ Forming PLGA Implant Prepared by Different Polymer Molecular Weight and Its Effect on Release Behavior," Journal of Pharmaceutical Sciences, Vol. 98, No. 1, pp. 135-145, 2009. crossref(new window)

Qutachi, O., Vetsch, J. R., Gill, D., Cox, H., Scurr, D. J., et al., "Injectable and Porous PLGA Microspheres That Form Highly Porous Scaffolds at Body Temperature," Acta Biomaterialia, Vol. 10, No. 12, pp. 5090-5098, 2014. crossref(new window)

Kang, S.-W., La, W.-G., and Kim, B.-S., "Open Macroporous Poly (lactic-co-glycolic acid) Microspheres as an Injectable Scaffold for Cartilage Tissue Engineering," Journal of Biomaterials Science, Polymer Ed., Vol. 20, No. 3, pp. 399-409, 2009. crossref(new window)

Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., et al., "Metre-Long Cell-Laden Microfibres Exhibit Tissue Morphologies and Functions," Nature Materials, Vol. 12, No. 6, pp. 584-590, 2013. crossref(new window)

Choi, S.-W., Zhang, Y., Yeh, Y.-C., Wooten, A. L., and Xia, Y., "Biodegradable Porous Beads and Their Potential Applications in Regenerative Medicine," Journal of Materials Chemistry, Vol. 22, No. 23, pp. 11442-11451, 2012. crossref(new window)

Huang, C.-C., Wei, H.-J., Yeh, Y.-C., Wang, J.-J., Lin, W.-W., et al., "Injectable PLGA Porous Beads Cellularized by Hafscs for Cellular Cardiomyoplasty," Biomaterials, Vol. 33, No. 16, pp. 4069-4077, 2012. crossref(new window)

Kim, C. M. Ullah, A., and Kim, G. M. "Preparation of Highly Porous PLGA Microparticles Using Droplet Fission and Gelatin Porogen," Proc. of 41st Micro and Nano Engineering, 2015.

Kim, T. K., Yoon, J. J., Lee, D. S., and Park, T. G., "Gas Foamed Open Porous Biodegradable Polymeric Microspheres," Biomaterials, Vol. 27, No. 2, pp. 152-159, 2006. crossref(new window)

Kim, C. M., Park, S. J., and Kim, G. M., "Applications of PLGA Microcarriers Prepared Using Geometrically Passive Breakup on Microfluidic Chip," Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, 2015.

Zhang, Q., Tan, K., Ye, Z., Zhang, Y., Tan, W., et al., "Preparation of Open Porous Polycaprolactone Microspheres and Their Applications as Effective Cell Carriers in Hydrogel System," Materials Science and Engineering: C, Vol. 32, No. 8, pp. 2589-2595, 2012.

Teh, S.-Y., Lin, R., Hung, L.-H., and Lee, A. P., "Droplet Microfluidics," Lab on a Chip, Vol. 8, No. 2, pp. 198-220, 2008. crossref(new window)

Dang, T.-D., Kim, Y. H., Kim, H. G., and Kim, G. M., "Preparation of Monodisperse Peg Hydrogel Microparticles Using a Microfluidic Flow-Focusing Device," Journal of Industrial and Engineering Chemistry, Vol. 18, No. 4, pp. 1308-1313, 2012. crossref(new window)

Choi, J. H. and Kim, G. M., "Micro-Patterning on Non-Planar Surface Using Flexible Microstencil," Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 165-168, 2011. crossref(new window)