JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Temperature in Different Rice Maturity Types
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 56, Issue 3,  2011, pp.233-243
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2011.56.3.233
 Title & Authors
Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Temperature in Different Rice Maturity Types
Lee, Chung-Kuen; Kwak, Kang-Su; Kim, Jun-Hwan; Son, Ji-Young; Yang, Won-Ha;
  PDF(new window)
 Abstract
This experiment was conducted to investigate the effect of future climate change on growing period and temperature in different rice maturity types as global warming progressed, where Odaebyeo, Hwaseongbyeo, Ilpumbyeo were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and A1B scenario was applied to weather data for future climate change at 57 sites in Korea. When cropping season was not adjusted to climate change, entire growing period and growing temperature were shorten and risen, respectively, as global warming progressed. On the other side, when cropping season was adjusted to climate change, growing period and temperature after heading date were not changed in contrast to growing period and growing temperature before heading which were more seriously shortened and risen as global warming progressed than in not adjusted cropping season. It is supposed that adjusting cropping season to climate change can alleviate rice yield reduction and quality deterioration to some degree by improving growing temperature condition during grain-filling period, but also still have a limit such as seriously shortened growing period indicating that there need to develope actively new rice cultivation methods and varieties for future climate change.
 Keywords
rice;climate change;global warming;growing period;growing temperature;
 Language
Korean
 Cited by
1.
생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가,이충근;김준환;손지영;양운호;윤영환;최경진;김광수;

한국농림기상학회지, 2012. vol.14. 4, pp.207-221 crossref(new window)
2.
파종일 변경이 기후변화 조건에서 곡물생산량에 미치는 영향,김대준;노재환;김정곤;윤진일;

한국농림기상학회지, 2013. vol.15. 1, pp.26-39 crossref(new window)
3.
농업 기후 정보 생산을 위한 미래 기후 자료 처리 GrADS 및 R 프로그램 구현,이규종;이세미;이변우;김광수;

대기, 2013. vol.23. 2, pp.237-243 crossref(new window)
4.
Re-examination of the Standard Cultivation Practices of Rice in Response to Climate Change in Korea,;;;;;;;

Journal of Crop Science and Biotechnology, 2013. vol.16. 2, pp.85-92 crossref(new window)
5.
쌀 수량이 평년수준인 2000년 대비 10% 증가한 2001년의 식미 및 이화학특성 비교,이점식;이정희;윤미라;곽지은;모영준;천아름;김정곤;

한국작물학회지, 2013. vol.58. 3, pp.292-300 crossref(new window)
6.
농업재해 예측을 위한 신 기후변화 시나리오의 농업기상자료 구축 - 111개 농업주요지점을 대상으로 -,주진환;정남수;서명철;

한국농공학회논문집, 2013. vol.55. 6, pp.87-99 crossref(new window)
7.
국내 육성 조생종 벼 품종들에 대한 등숙기 고온내성 평가,조성우;정지웅;강경호;김현순;김보경;

한국작물학회지, 2015. vol.60. 2, pp.146-152 crossref(new window)
8.
벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향,손지영;김준환;이충근;양운호;

한국작물학회지, 2015. vol.60. 3, pp.266-272 crossref(new window)
9.
강원도 주요 농업지대별 중만생종 벼 품종의 쌀 수량 및 품질특성 비교,정정수;고병대;함진관;최경진;양운호;

한국작물학회지, 2015. vol.60. 4, pp.421-430 crossref(new window)
10.
재배기간 동안 이상고온 발생에 따른 콩의 수량반응 탐색,정유란;조현숙;김준환;상완규;신평;서명철;정우석;

한국농림기상학회지, 2016. vol.18. 4, pp.188-198 crossref(new window)
1.
Implementation of GrADS and R Scripts for Processing Future Climate Data to Produce Agricultural Climate Information, Atmosphere, 2013, 23, 2, 237  crossref(new windwow)
2.
Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice, The Korean Journal of Crop Science, 2015, 60, 3, 266  crossref(new windwow)
3.
Palatability and Physicochemical Properties in 2001 Yield Increased by 10% than Normal Level in 2000, Korean Journal of Crop Science, 2013, 58, 3, 292  crossref(new windwow)
4.
The Influence of Shifting Planting Date on Cereal Grains Production under the Projected Climate Change, Korean Journal of Agricultural and Forest Meteorology, 2013, 15, 1, 26  crossref(new windwow)
5.
Predicting temporal shifts in the spring occurrence of overwintered Scotinophara lurida (Hemiptera: Pentatomidae) and rice phenology in Korea with climate change, International Journal of Biometeorology, 2016, 60, 1, 53  crossref(new windwow)
6.
Evaluation on Early-maturing Korean Japonica Cultivars for High-temperature Tolerance during Grain Filling Stage, The Korean Journal of Crop Science, 2015, 60, 2, 146  crossref(new windwow)
7.
Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea, Journal of Crop Science and Biotechnology, 2015, 18, 4, 257  crossref(new windwow)
8.
Comparison of Yield and Quality Characteristics on Mid-Late Maturing Rice Cultivars in Major Cultivation Areas of Gangwon Province, The Korean Journal of Crop Science, 2015, 60, 4, 421  crossref(new windwow)
9.
Re-examination of the standard cultivation practices of rice in response to climate change in Korea, Journal of Crop Science and Biotechnology, 2013, 16, 2, 85  crossref(new windwow)
10.
Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station -, Journal of The Korean Society of Agricultural Engineers, 2013, 55, 6, 87  crossref(new windwow)
11.
Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study, Korean Journal of Agricultural and Forest Meteorology, 2012, 14, 4, 207  crossref(new windwow)
12.
Responses of Soybean Yield to High Temperature Stress during Growing Season: A Case Study of the Korean Soybean, Korean Journal of Agricultural and Forest Meteorology, 2016, 18, 4, 188  crossref(new windwow)
 References
1.
국립기상연구소. 2004. 기후변화협약 대응 지역기후 시나리오 산출 기술개발(III), 권원태 외 12명, 기상연구소보고서 MR040C03. pp. 510.

2.
국립기상연구소. 2007. 기후변화협약대응 지역기후시나리오 활용기술기발(III). 국립기상연구소. pp. 599.

3.
농촌진흥청. 1981. 수도냉해실태분석과 종합기술대책. pp. 168.

4.
농촌진흥청. 2004. 지역 및 지대별 고품질 쌀 생산을 위한 이앙적기, 적정 질소시비량 및 수확적기. pp. 5-131.

5.
농촌진흥청. 2004. 고품질 쌀 생산을 위한 재배 및 수확 후 관리기술, 농촌진흥청. pp. 155.

6.
윤성호, 이정택. 2001. 기후변화에 따른 벼 적정 등숙기간의 변동과 대책. 한국농림기상학회지. 3(1) : 55-70.

7.
이충근. 2008. 우리나라 환경 및 품종에서 벼 생육예측을 위한 품종모수 추정. pp. 120-134. 벼 종실중 및 종실질소함량 추정모델 개발 및 적용, 서울대학교 박사학위논문. pp. 184.

8.
Bouman, B. A. M, Kropff, M. J., Tuong, T. P., Wopereis, M. C. S., ten Berge H. F. M., van Laar, H. H. 2001. ORYZA2000 : modeling lowland rice. Los Banos (Philippines); International Rice Research Institute, and Wageningen: Wageningen University and Research Centre. pp. 235.

9.
IPCC. 2007. Climate change 2007 : The physical science basis.

10.
Ishimaru, T., Hirabayashi, H., Ida, M., Takai T., San-Oh, Y. A., Yoshinaga, S., Ando, I., Ogawa, T., Kondo, M. 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann. Bot. doi:10.1093/aob/mcq124.

11.
Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S, Bennett, J., Craufurd, P. Q. 2010a. Physiological and proteomic approaches to dissect reproductive stage heat tolerance in rice (Oryza sativa L.). J. Exp. Bot. 61 : 143-156. crossref(new window)

12.
Jagadish, S. V. K., Sumfleth, K., Howell, G., Redona, E., Wassmann, R., Heuer, S. 2010b. Temperature effects on rice: significance and possible adaptation pp. 19-26. In Advanced Technologies of RiceProduction for Coping withClimate Change: 'No Regret' Options for Adaptation and Mitigation and their Potential Uptake. Los Banos (Philippines); International Rice Research Institute.

13.
Jagadish, S. V. K., Craufurd, P. Q., Wheeler, T. R. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58 : 1627-1635. crossref(new window)

14.
Kobata, T., Uemuki, N. 2004. High temperatures during the grain-filling period do not reduce the potential grain dry matter increas of rice. Agron. J. 96 : 406-414. crossref(new window)

15.
Kondo, M. 2009. Effect of global warming on rice culture and adoptive strategies. International symposium 'Rice research in the era of global warming'. pp. 1-9.

16.
Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S., Cassman, K. G. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. 101 : 9971-9975. crossref(new window)

17.
Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. E., Thomas, J. M. G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95 : 398-411. crossref(new window)

18.
Satake T., Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. J. Crop Sci. 47 : 6-17. crossref(new window)

19.
Sato, K., Inaba, K. 1976. High temperature injuries to ripening of the rice plant. 5. An early decline of the assimilate storing ability of rice grains under high temperature. Proc. Crop Sci. Soc. Jpn. 45 : 156-161. crossref(new window)

20.
Suzuki, M. 1980. Stuies on distinctive patterns of dry matter production in the building process of grain yields in rice plants grown in the warm region in Japan. Bull. Kyushu Nat. Agri. Exp. Sta. 20 : 429-494.

21.
Yoshida, S., Satake, T., Mackill, D. 1981. High temperature stress. IRRI Res. Pap. Ser. 67 : 1-15.

22.
Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines. pp. 269.