Advanced SearchSearch Tips
Expression of OsPTs-OX Transgenic Rice in Phosphate-Deficient Condition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Volume 56, Issue 3,  2011, pp.264-272
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2011.56.3.264
 Title & Authors
Expression of OsPTs-OX Transgenic Rice in Phosphate-Deficient Condition
Song, Song-Yi; Yi, Gi-Hwan; Park, Dong-Soo; Seo, Jong-Ho; Son, Beom-Young; Kim, Do-Hoon; Nam, Min-Hee;
  PDF(new window)
It needs to develop high phosphate-available rice that is able to minimize environmental pollution caused by phosphate fertilizer. Then we have transformed 4 rice transporter genes, OsPT(Oryza sativa Phosphate Transporter)1, OsPT4, OsPT7 or OsPT8, to rice (Oryza sativa cv. Dongjin) via Agrobacterium-mediated transformation. We tested adaptation in the P-deficient condition of Dongjin (parental) and each transgenic line in the pot and the field conditions. Definite physiological changes have been observed in OsPTs transgenic lines including culm length, root formation and heading date. Phosphate uptake at harvesting stage was about three times higher in OsPT1-OX (overexpression) and OsPT4-OX than in Dongjin (wt) without P application. There are no variations in total phosphate-content of brown rice of OsPT1-OX in spite of high phosphate uptake. Practically the expression of OsPT1 has contributed to stabilize grain production without P fertilization in rice cultivation than Dongjin.
rice;OsPT;Phosphate transporter gene;transformation;
 Cited by
Bosse, D., M. Kock. 1998. Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant Cell Environ. 21 : 325-332. crossref(new window)

Chen, D. H., P. C. Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter. 17 : 53-57. crossref(new window)

Delhaize, E., D. M. Hebb, P. R. Ryan. 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125(4) : 2059-2067. crossref(new window)

Del Pozo, J. C., I. Allona, V. Rubio, A. Leyva, A. de la Pena, C. Aragoncillo, J. Paz-Ares. 1999. A type 5 acid phosphatase gene from Arabidopsis thalianais induced by phosphate starvation and by some other types of phosphate mobilising/ oxidative stress conditions. Plant J. 19 : 579-589. crossref(new window)

Dinkelaker, B., V. Romheld, H. Marschner. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12 : 285-292. crossref(new window)

Duff, S. M. G., S. Gautam, W. C. Plaxton. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 90 : 791-800. crossref(new window)

Howitt, S. M., M. K. Udvatdi. 2000. Structure function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta. 1465 : 152-170. crossref(new window)

Leggewie, G., L. Willmitzer, J. W. Riesmeier. 1997. Two cDNAs from potato are able to complement a phosphate uptake- deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell. 9(3) : 381-392. crossref(new window)

Liu, H., A. T. Trieu, L. A. Blaylock, M. J. Harrison. 1998. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol. Plant-Microbe Interact. 11(1) : 14-22. crossref(new window)

Liu, J., D. A. Samac, B. Bucciarelli, D. L. Allan, C. P. Vance. 2004. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J. 41(2) : 257-268. crossref(new window)

Lopez-Bucio, J., E. Hernandez-Abreu, L. Sanchez-Calderon, M. F. Nieto-Jacobo, J. Simpson, L. Herrera-Estrella. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129(1) : 244-256. crossref(new window)

Marschner, H. 1995. Mineral Nutrition in Higher Plants. San Diego, CA:Academic Press Inc.

Miller, S. S., J. Liu, D. L. Allan, C. J. Menzhuber, M. Fedorova, C. P. Vance. 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 127 : 594-606. crossref(new window)

Muchhal, U. S., J. M. Pardo, K. G. Raghothama. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93(19) : 10519-10523. crossref(new window)

Raghothama, K. G. 1999. Phosphate acquisition. Annu Rev Plant Physiol. Plant Mol. Biol. 50 : 665-693. crossref(new window)

Rausch, C., M. Bucher. 2002. Molecular mechanisms of phosphate transport in plants. Planta. 216(1) : 23-37. crossref(new window)

Sanchez-Calderon, L., J. Lopez-Bucio, A. Chacon-Lopez, A. Gutierrez-Ortega, E. Hernandez-Abreu, L. Herrera-Estrella. 2006. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol. 140(3) : 879-889. crossref(new window)

Smith, F. W., P. M. Ealing, B. Dong, E. Delhaize. 1997. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11(1) : 83-92. crossref(new window)

Smith, F. W., A. L. Rae, M. J. Hawkesford. 2000. Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta. 1465 : 236-245. crossref(new window)