JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Content of Potato Tuber Component and Potato Variety on the Bioethanol Production
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 56, Issue 3,  2011, pp.273-278
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2011.56.3.273
 Title & Authors
Effect of Content of Potato Tuber Component and Potato Variety on the Bioethanol Production
Jang, You-Ri; Lim, Young-Hoon; Kim, Keun;
  PDF(new window)
 Abstract
The contents of starch, moisture, crude protein, crude fat, crude fiber, and ash of different varieties of potatoes were analyzed. The average starch contents of Go-woon, Ha-ryoung, Dae-seo, Jo-won, Ga-won potatoes were , , , , and , respectively. The ground powder of each starchy substrate was suspended in distilled water, and then liquefied, saccharified, and fermented by Saccharomyces cerevisiae ATCC26603 at for 4 days. By statistical analysis, the effectiveness of the contents of the different components of the potato tubers on the ethanol production were examined. The results showed that the starch content positively affected the ethanol production. while moisture content affected negatively the ethanol production. Ethanol production from the 5 different varieties of potato tubers harvested on different time were examined and the results indicated that both of potato variety and the harvesting-time significantly affected the ethanol production. Among the several varieties of potato, Ha-ryoung produced the highest yield of ethanol as much as L/ton or L/ha.
 Keywords
potato variety;tuber components;bioethanol;harvesting time;statistical analysis;
 Language
Korean
 Cited by
1.
Quality and Yield Characteristics of Potato (Solanum tuberosum L.) Grown at Paddy Field in Spring Season,;;;;;;;;;;

원예과학기술지, 2013. vol.31. 1, pp.24-31 crossref(new window)
1.
Quality and Yield Characteristics of Potato (Solanum tuberosum L.) Grown at Paddy Field in Spring Season, Korean Journal of Horticultural Science and Technology, 2013, 31, 1, 24  crossref(new windwow)
 References
1.
김광수, 김용범, 장영석, 방진기. 2007. 바이오에너지 원료작물 생산 및 연구동향. 식물생명공학회지. 34 : 103-109.

2.
수송용 바이오분야 전문위원회. 2007. 신.재생에너지 R & D 전략 2030. 바이오(수송용). 산업자원부.

3.
신용서, 성현주, 김동한, 이갑상. 1994. 감자를 첨가한 요구르트의 제조와 특성. 한국식품과학회지. 26 : 266-271.

4.
이경은, 이재연, 김 근. 2008. 작물의 성분 함량이 바이오에탄올 생산에 미치는 영향. 한국작물학회지. 53 : 339-346.

5.
최옥자, 고무석. 1991. 마이크로파 가열이 감자가루 저장중 지방산 조성에 미치는 영향. 한국영양식량학회지. 20 : 461-466.

6.
AOAC. 1990. Official Methods of Analysis of the A.O.A.C, 15th edition. Association of Official Analytical Chemists. Wachington D.C., USA. pp. 79-781.

7.
Easson, D. L., V. B. Woods, E. G. A. Forbes. 2004. Potential of cropping for biofuels in northern Ireland, The Agricultural Research Institute of Northern Ireland, Hillsborough. p. 26.

8.
Energy Policy Act. 2005. Title XV (Ethanol and Motor Fuels). Subtitle A (General Provisions). Section 1501.

9.
Hsu, T. 1996. Pretreatment of biomass. In: Wyman, C (ed.) Handbook on bioethanol: production and utilization. Taylor & Francis. Washington DC. pp. 179-212.

10.
Ingledew, W. M. 1999. Alcohol production by Saccharomyces cerevisiae: a yeast primer. In K. A. Jacques, T. P. Lyons, and D. R. Kelsall (eds.). Chap. 5. The alcohol textbook. 3rd ed. Nottingham University Press, Nottingham. pp. 49-87.

11.
Ingledew, W. M. 2005. Improvements in alcohol technology through advancements in fermentation technology. Getreidetechnologie. 59 : 308-311.

12.
Kirsop, B. H. 1982. Developments in beer fermentation. Topics in Enzymes and Fermentation Technology. 6 : 79-131.

13.
Miller, G. L. 1959. Determination of reducing sugar by DNS method. Anal. Chem. 31 : 426-429. crossref(new window)

14.
Nguyen T. T., S. H. Gheewala. 2008. Life cycle assessment of fuel ethanol from cassava in Thailand.. Int. J. Life Cycle Assess. 13 : 147-154. crossref(new window)

15.
Patterson, C. A. and W. M. Ingledew. 1999. Utilization of peptides by a lager brewing yeast. J. Am. Soc. Brew. Chem. 57 : 1-8.

16.
Russell, I. 2003. Understanding yeast fundamentals. In K. A. Jacques, T. P. Lyons, and D. R. Kelsall (eds.). 4th ed. Chap. 9. The alcohol textbook. Nottingham University Press, Nottingham. pp. 85-119.

17.
Schwartz L. 2008. China fuels ethanol industry with yams, sweet potatoes and cassava. http://www.renewableenergyworld.com/ rea/news/story?id=52450.

18.
Srichuwong, S., M. Fujiwara, X. Wang, T. Seyama, R. Shiroma, M. Arakane, N. Mukojima, K. Tokuyasu. 2009. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass & Bioenergy. 33 : 890-898. crossref(new window)

19.
Tasic, M. B., B. V. Konstantinovic, M. L. Lazic, V. B. Veljkovic. 2009. The acid hydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 43 : 208-211. crossref(new window)

20.
Venkatasubramanian, K., H. J. Heinz, C. R. Keim. 1985. In :Dekker, M. (ed). Starch conversion technology. New York. Basel. pp. 143-173.

21.
World Watch Institute. 2006. Bio-Fuel for transportation, global potential and implications for sustainable agriculture and energy in the 21st century. Washington, D. C. June 7.

22.
Ziska L. H., G. B. Runion, M. Tomecek, S. A. Prior, H. A. Torbet, R. Sicher. 2009. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass & Bioenergy. 33 : 1503-1508. crossref(new window)