JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluate of SSRs for Heat Tolerance using Korean Major Wheat Cultivars and Heat Resistant Turkey Resources
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 60, Issue 3,  2015, pp.293-299
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2015.60.3.293
 Title & Authors
Evaluate of SSRs for Heat Tolerance using Korean Major Wheat Cultivars and Heat Resistant Turkey Resources
Son, Jae-Han; Kim, Kyeung-Hoon; Cheong, Young-Keun; Park, Jong-Chul; Kim, Kyong-Ho; Kim, Yang-Kil; Oh, Young-Jin; Song, Tae-Hwa; Kim, Bo-kyeong; Kang, Chon-Sik;
  PDF(new window)
 Abstract
High temperature is one of major environmental stress. Heat tolerance managing is difficult through the phenotypic selection, so marker assistant selection (MAS) using molecular markers like as RAPD, SSR etc. was tried to select useful traits for heat tolerance. Fourteen SSR markers reported by previous research were selected for this research. We tried to evaluate 14 SSR markers for MAS using 31 useful wheat resources including 24 crossing line from Turkey, six Korean wheat cultivars and Chinese spring. The average of the number of alleles and PIC values in this study were 6.14 and 0.64, respectively. Two major clades and four sub clades were grouped by phylogenetic tree using UPGMA. Four Korean wheat cultivars were distinct from other Turkey resources in the phylogenetic dendrogram. From the results, we expected that these markers were able to adapt to screening wheat genotyping for heat tolerance.
 Keywords
heat tolerance;MAS;SSR;wheat;
 Language
Korean
 Cited by
 References
1.
RDA. 2012. Standard of research and analysis for agricultural technology. pp. 339-365.

2.
Anderson, J. A., R. W. Stack, S. Liu, B. L. Waldron, P. Langridge, E. S. Lagudah, T. A. Holton, R. Appels, A. D. Fjeld, C. Coyne, B. Moreno-Sevilla, J. M. Fetch, Q. J. Song, P. B. Cregan, and R.C. Frohberg. 2001. DNA markers for fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102 : 1164-1168. crossref(new window)

3.
Bhullar, S. S. and C. F. Jenner. 1985. Differential responses to high temperature of starch and nitrogen accumulation in the grain of four cultivars of wheat. Aust. J. Plant Physiol. 12 : 363-375. crossref(new window)

4.
Boyer, J. S. 1982. Plant productivity and environment. Science 218 : 443-448. crossref(new window)

5.
Chen, J. M., X. Xue, D. Cai, K. B. Jensen, and N. J. Chatterton. 1998. Development and characterization of Elymus rectisetus species and accession-specific RAPD markers. In: A. E. Slinkard (ed.), Proc. 9th Int. Wheat Genet. Symp. 3 : 98-101.

6.
Univ. Extension Press. Univ. of Saskatchewan, Saskatoon. Distelfeld, A., C. Uauy, T. Fahima, and J. Dubcovsky. 2006. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 169 : 753-763. crossref(new window)

7.
Gibson, L. R. and G. M. Paulsen. 1999. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science 39(6) : 1841-1846. crossref(new window)

8.
Giroux, M. J. and C. F. Morris. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch surface friabilin. Theor. Appl. Genet. 95 : 857-864. crossref(new window)

9.
Hays, D. B., J. H. Do, R. E. Mason, G. Morgan, and S. A. Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172 : 1113-1123. crossref(new window)

10.
Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson. 2001. IPCC. Climate Change, The scientific basis. Contributions of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press pp. 1-182.

11.
Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124 : 743-756.

12.
Liu, B. H. 1998. Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton.

13.
Mason, R. E., S. Mondal, F. W. Beecher, A. Pacheco, B. Jampala, A. M. H. Ibrahim, and D. B. Hays. 2010. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174(3) : 423-436. crossref(new window)

14.
McCouch, S. R., S. Temnykh, A. Lukashova, and J. Coburn. 2001. Microsatellite Markers in Rice: Abundance, Diversity and Applications. In: Rice Genetics IV. International Rice Research Institute (IRRI), Manila pp. 117-135.

15.
Mclauchlan, A., F. C. Ogbonnaya, B. Hollingsworth, M. Carter, K. R. Gale, R. J. Henry, T. A. Holten, M. K. Morell, L. R. Rampling, P. J. Sharp, M. R. Shariflou, M. G. K. Jones, and R. Appels. 2001. Development of PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J. Agric. Res. 52 : 1409-1416. crossref(new window)

16.
Naghavi, M. R., M. Mardi, S. M. Pirseyedi, M. Kazemi, P. Potki, and M. R. Ghafari. 2007. Comparison of genetic variation among accessions of Agilopstaushii using AFLP and SSR markers, Genet Resour. Crop. Evol. 54 : 237-240. crossref(new window)

17.
Nam, J. H., H. S. Song, H. H. Park, H. Y. Heu, M. W. Park, K. H. Park. C. W. Rho, S. Y. Nam, J. I. Ju, C. B. Park, Y. S. Lee, S. G. Park, and D. H. Kim. 1998. A new high milling, early maturing, semi-dwarf and white grain wheat variety "Keumkangmil" with good bread quality. RDA. J. Crop Sci. 40(2) : 81-87.

18.
Prins, R., J. Z. Groenewald, G. F. Marais, J. W. Snape, and R. M. D. Koebner. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl. Genet. 103 : 618-624. crossref(new window)

19.
Rohlf, F. J. 1998. NTSYS-PC. Numerical taxonomy and multivariate analysis system, version 2.00. Exeter Software, Setauket, NY.

20.
Sadat, S., K. A. Saeid, M. R. Bihmta, S. Torabi, S. G. H. Salekdeh, and G. A. L. Ayeneh. 2013. Marker assisted selecition for heat tolerance in bread wheat. World Applied Sciences Journal 21(8) : 1181-1189.

21.
Salem, K. F. M., A. M. El-Zanaty, and R. M. Esmail. 2008. Assesing diversity using morphological characters and microsatellite markers. World J. Agric. Sci. 4(5) : 538-544.

22.
Sharp, P. J., S. Johnston, G. Brown, R. A. McIntosh, M. Pellota, M. Carter, H. S. Bariana, S. Khatkar, E. S. Lagudah, R. P. Singh, M. Kairallah, R. Potter, and M. G. K. Jones. 2001. Validation of molecular markers for wheat breeding. Aust. J. Agric. Res. 52 : 1357-1366. crossref(new window)

23.
Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch. 2001. Computational and experimental analysis of mecrosatellites in rice (Oryza sativa L.): frequency, lenth variation, transposon association, and genetic marker potential. Genome Res. 11 : 1441-1452. crossref(new window)

24.
Wardlaw, I. F., I. A. Dawson, P. Munibi, and R. Fewster. 1989. The tolerance of wheat to high temperatures during reproductive growth. I. Survey rocedures and general response patterns. Aust. J. Agr. Res. 40 : 1-13. crossref(new window)

25.
Yang, J., R. G. Sears, B. S. Gill, and G. M. Paulsen. 2002. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126 : 275-282. crossref(new window)

26.
Zeb, B., I. Ahmad Khan, S. Ali, S. Bacha, S. Mumtaz, and Z. A. Swati, 2009. Study on genetic diversity on Pakistani wheat varieties using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 8(17) : 4016-4019.

27.
Zhang, W. and C. Smith. 1992. Computer simulation of marker-assisted selection utilizing linkage disequilibrium. Theor. Appl. Genet. 83 : 813-82.