JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Growth of Bioenergy Crop Miscanthus sacchariflorus cv. Geodae 1 on Barren Reclaimed Land Applied with Solidified Sewage Sludge in Landfill Sites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 60, Issue 3,  2015, pp.374-380
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2015.60.3.374
 Title & Authors
Growth of Bioenergy Crop Miscanthus sacchariflorus cv. Geodae 1 on Barren Reclaimed Land Applied with Solidified Sewage Sludge in Landfill Sites
An, Gi Hong; Jang, Yun-Hui; Um, Kyoung Ran; Yu, Gyeong-Dan; Lee, Ji-Eun; Cha, Young-Lok; Moon, Yun-Ho; Ahn, Jong Woong;
  PDF(new window)
 Abstract
This study firstly provides basic data for selection of cultivatable bioenergy grass in barren reclaimed lands applied with solidified sewage sludge. The experimental plots consisted of a plot containing reclaimed land mixed with solidified sewage sludge (MSS 50), a plot covered by solidified sewage sludge (CSS 100), and an original reclaimed soil plot (ORS). The growth, biomass production of bioenergy grasses and soil chemical properties were investigated in each experimental plot for 5 years. The organic matter (OM) and total nitrogen (T-N) content in both MSS 50 and CSS 100 were considerably higher than those in ORS. In bioenergy grasses, M. sacchariflorus cv. Geodae 1 showed an excellent growth and adaptability on reclaimed land applied with solidified sewage sludge. The application of solidified sewage sludge may provided soil nutrition in the reclaimed land due to the fact that bioenergy crops grew better in soils applied with solidified sewage sludge than in untreated soils, and treated soils had higher OM and T-N content than untreated soils. This study suggests that M. sacchariflorus cv. Geodae 1 is the most suitable biomass feedstock crop for biomass production and that solidified sewage sludge may be used as a soil material for cultivation of bioenergy grass on reclaimed lands.
 Keywords
cellulosic bioenergy grass;barren reclaimed land;biomass production;Miscanthus sacchariflorus cv;Geodae 1;soil cover material;
 Language
Korean
 Cited by
 References
1.
An, G. H., S. -I. Lee, B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, B. C. Kim, and S. P. Kim. 2011. Effects of application of solidified sewage sludge on the growth of bioenergy crops in reclaimed land. Kor. J. Crop Sci. 56(4) : 299-307. crossref(new window)

2.
An, G. H., B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, Y. M. Yoon, K. G. Park, and J. T. Kim. 2012. The effects of solidified sewage sludge as a soil cover material for cultivation of bioenergy crops in reclaimed land. Korean J. Crop Sci. 57(3) : 283-247.

3.
Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 33 : 752-759. crossref(new window)

4.
Beale, C. V. and S. P. Long. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversionin cool climates? Plant Cell Environ. 18 : 641-650. crossref(new window)

5.
Beale, C. V., D. A. Bint, and S. P. Long. 1996. Leaf photosynthesis in the C4-grass Miscanthus giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47 : 267-273. crossref(new window)

6.
Christian, D. G., A. B. Riche, and N. E. Yates. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28 : 320-327 crossref(new window)

7.
Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. -U. Schwarz, K. Tayebi, and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 93 : 1013-1019. crossref(new window)

8.
Fernando, E. M., B. V. Maria, P. L. Stephen, and A. B. German. 2008. Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agri. Forest Meteorology. 148 : 1280-1292 crossref(new window)

9.
Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197. crossref(new window)

10.
Hyun, J. H. and M. G. Kim. 2007. Advanced Technologies in liner and cover system of landfill. J. of KSEE. 29(1) : 3-7.

11.
Kang, B. H. and S. I. Shim. 1998. Screening of saline tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Korean J. Environ. Agri. 17(1) : 26-33.

12.
Kang, K., S. G. Hong, K. J. Ji, U. Y. Choi, H. H. Lee, H. J. Kim, and S. J. Park. 2014. Monitoring biota in Giant Miscanthus fields. J. Korean Soc. Agri. Engineers. 56(1) : 88-99.

13.
Kim, S., J. H. Jeong, W. Y. Choi, J. H. Lee, K. B. Lee, and I. B. Im. 2013. Change of vegetation characteristics and soil chemical properties at seamangeum reclaimed land in Korea. Weed Turf. Sci. 2(3) : 260-266. crossref(new window)

14.
Kwak, Y. S., J. K. Hwangbo, H. C. Yun, S. J. Kang, and J. S. Kang. 2005. Evaluation of sludge-derived bio-soil for landscape management. RIST. 19(1) : 11-14.

15.
Lee, C., H. B. Kim, D. G. An, H. C. Yoon, S. J. Kang, and J. S. Kang. 2006. Utilization of dried and solidified sewage sludge as daily cover material in waste landfill. Korean Geo-Environmental Conference. 245-254.

16.
Lee, S. H., Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected by desalinization process in Dae-Ho reclaimed land. Korean J. Environ. Agric. 19(4) : 364-369.

17.
Lewandowski, I., J. C. Clifton-Brown, J. M. O. Scurlock, and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19 : 209-227. crossref(new window)

18.
Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339. crossref(new window)

19.
NIAST. 2000. Method of Soil and Plant Analysis, National Institute of Agriculture Science and Technology.

20.
Ryu, J. H., D. Y. Chung, S. W. Hwang, K. D. Lee, S. B. Lee, W. Y. Choi, S. K. Ha, and S. J. Kim. 2010. Patterns of leaching and distribution of cations in reclaimed soil according to gypsum incorporation rate. Kor. J. Soil Sci. Fert. 43(5) : 596-601.

21.
Song, U. and Lee, E. G. 2010. Ecophysiological responses of plants after sewage sludge compost applications. J. Plant Biol. 53 : 259-267. crossref(new window)

22.
Yoo, N. J., Y. G. Kim, B. S. Park, and H. I. Jeong, 1999. A feasibility study on the use of liner and cover materials using sewage sludge. Korean Society Geotechnical Engineering. 15(2) : 43-71.

23.
Wei, Y. and Liu. Y. 2005. Effects of sewage sludge compost application on crops and cropland in a 3-year field study. Chemosphere. 59 : 1257-1265. crossref(new window)