JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Research Status for Drought Tolerance in Maize
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 60, Issue 4,  2015, pp.401-411
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2015.60.4.401
 Title & Authors
Research Status for Drought Tolerance in Maize
Kim, Kyung-Hee; Moon, Jun-Cheol; Kim, Jae-Yoon; Kim, Hyo-Chul; Shin, Seung-Ho; Song, Ki-Tae; Lee, Byung-Moo;
  PDF(new window)
 Abstract
Drought stress has detrimental effects on the seedling development, vegetative/ reproductive growth, photosynthesis, root proliferation, anthesis, anthesis-silking interval (ASI), pollination and grain yield in maize. Typically, two weeks before silking through pollination are an important time in maize life. Here we reviewed the effects of drought stress on growth, physiological/ molecular researches for drought tolerance, and breeding to genomics in maize. Drought stress during kernel development increases leaf dying and lodging, decreases grain filling period and grain yield. Physiological factors of drought stress/ effects are water content, water deficits, and water potential. Nowdays molecular marker assisted breeding method is becoming increasingly useful in the improvement of new germplasm with drought stress tolerance.
 Keywords
maize;drought tolerance;drought stress;anthesis-silking interval (ASI);molecular marker;
 Language
Korean
 Cited by
 References
1.
Abrecht, D. G. and P. S. Carberry. 1993. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Res. 31 : 55-59. crossref(new window)

2.
Agrama, H. A. S. and M. E. Moussa. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica. 91 : 89-97. crossref(new window)

3.
Almeida, G. D., D. Makumbi, C. Magorokosho, S. Nair, A. Borem, J. Ribaut, M. Banziger, B. M. Prasanna, J. Crossa, and R. Rabu. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126 : 583-600. crossref(new window)

4.
Aslam, M., I. A. Khan, M. Saleem, and Z. Ali. 2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pak. J. Bot. 38(5) : 1571-1579.

5.
Aslam, M., M. S. I. Zamir, I. Afzal, M. Yaseen, M. Mubeen, and A. Shoaib. 2013. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomic in Moldova. Vol. XLVI, No.2 (154) : 99-114.

6.
Banziger, M., G. O. Edmeades, D. Beck, and M. Bellon. 2000. Breeding for drought and nitrogen stress tolerance in maize. From theory to practice. CIMMYT, Mexico, pp. 39-42.

7.
Barnaby, J. Y., M. Kim, G. Bauchan, J. Bubce, V. Reddy, and R. C. Sicher. 2013. Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PLos ONE 8(10) : e77145. crossref(new window)

8.
Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48 : 1649-1664. crossref(new window)

9.
Bernardo, R. and J. Yu. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47 : 1082-1090. crossref(new window)

10.
Blum, A. 1988. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100 : 77-83.

11.
Bolanos, J. and G. O. Edmeades. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. 1. Responses in grain-yield, biomass, and radiation utilization. Field Crops Res. 31 : 233-252. crossref(new window)

12.
Bolanos, J. and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80. crossref(new window)

13.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32 : 314-331.

14.
Boyer, J. S. and M. E. Westgate. 2004. Grain yields with limited water. J. Exp. Bot. 55 : 2385-2394. crossref(new window)

15.
Burton, A. L., J. M. Jahnson, J. M. Foerster, C. N. Hirsch, C. R. Buell, M. T. Hanlon, S. M. Kaeppler, K. M. Brown, and J. P. Lynch. 2014. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor. Appl. Genet. 127 : 2293-2311. crossref(new window)

16.
Cakir, R. 2004. Effect of water at different development stages on vegetative and reproductive growth of corn. Field Crops Research. 89 : 1-16. crossref(new window)

17.
Cattivelli, L., P. Baldi, C. Crosatti, N. Di Fonzo, P. Faccioli, m. Grossi, A. M. Mastrangelo, N. Pecchioni, and A. M. Stance. 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48 : 649-665. crossref(new window)

18.
Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A. M. Mastrangelo, E. Francia, C. Mare, A. Tondelli, and A. M. Stanca. 2008. Drought tolerance improvement in crop plants:An integrated view from breeding to genomics. Field Crops Research. 105 : 1-14. crossref(new window)

19.
Chen, J., W. Xu, J. J. Burke, and Z. Xin. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop. Sci. 50 : 2506-2515. crossref(new window)

20.
Chen, M.-H., P. Kaur, B. Dien, F. Below, M. L. Vincent, and V. Singh. 2013. Use of tropical maize for bioethanol production. World J Microbiol Biotehnol. 29(8) : 1509-1515. crossref(new window)

21.
Chugh, V., N. Kaur, and A. K. Gupta. 2011. Evaluation of oxidative stress tolerance in maize (Zea maize L.) seedling response to drought. Indian J. Biochem. Biophys. 48 : 47-53.

22.
Cushman, J. C. 2001. Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 127 : 1439-1448. crossref(new window)

23.
Eathington, S. R., T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull. 2007. Molecular markers in a commercial breeding program. Crop Sci. 47(S3) : S154-S163.

24.
Edmeades, G. O., J. Bolanos, A. Elings, J.-M. Ribaut, M. Banziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., K. J. Boote (Eds.), Physiology and modelling kernel set in maize. CSSA special publication No. 29. CSSA, Madison, WI, pp. 43-73.

25.
Gemenet, D. C., F. N. Wachira, R. S. Pathak, and S. W. Munyiri. 2010. Identification of molecular markers linked to drought tolerance using bulked segregant analysis in Kenyan maize (Zea mays L.) landraces. J. Anim. Plant Sci. 9(1) : 1122-1134.

26.
Gulli, M., E. Salvatori, L. Fusaro, C. Pellacani, F. Manes, and N. Marmiroli. 2015. Comparison of drought stress response and gene expression between a GM maize variety and a Near-Isogenic Non-GM variety. Plos ONE 10(2) : e0117073. crossref(new window)

27.
Hao, Z. F., X. H. Li, C. X. Xie, M. S. Li, D. G. Zhang, L. Bai, and S. H. Zhang. 2008. Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann. Appl. Biol. 153 : 73-83. crossref(new window)

28.
Hao, Z., X. Liu, X. Li, C. Xie, M. Li, D. Zhang, S. Zhang, and Y. Xu. 2009. Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Plant Breeeding. 128 : 337-341. crossref(new window)

29.
Hao, Z., X. Li, X. Liu, C. Xie, M. Li, D. Zhang, and S. Zhang. 2010. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica. 174 : 165-177. crossref(new window)

30.
Heiniger, R. W. 2000. Irrigation and drought management. Crop Science Department. Available from: http://www.ces.ncsu.edu/ plymouth/cropsci/cornguide/Chapter4.html

31.
Helentjaris, T., G. King, M. Slocum, C. Siedenstrang, and S. Wegman. 1985. Restriction fragment length polymorphisms as probes for plant diversity and as tools for applied plant breeding. Plant Mol. Biol. 5 : 109-118. crossref(new window)

32.
Herrero, M. P. and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Sci. 21 (1) : 105-110. crossref(new window)

33.
Hoad, S. P., G. Russell, M. E. Lucas, and I. J. Bingham. 2001. The management of wheat, barley and oat root systems. Adv. Agron. 74 : 193-246. crossref(new window)

34.
ISAAA. http://www.isaaa.org.

35.
Jones, 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 22 : 1043-1055. crossref(new window)

36.
Jones, H. G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58 : 119-130.

37.
Kerstiens, G. 1996. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47 : 1813-1832. crossref(new window)

38.
Khodarahmpour, Z. 2011. Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr. J. Biotechnol. 10(79) : 18222-18227.

39.
Kim, J. Y., J.-C. Moon, S.-B. Beak, Y.-U. Kwon, K. Song, and B.-M. Lee. 2014. Genetic improvement of maize by marker-assisted breeding. Korean J. Crop Sci. 59 (2) : 109-127. crossref(new window)

40.
Lande, R. and R. Thompson. 1990. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124(3) : 743-756.

41.
Landi, P., S. Giuliani, S. Salvi, M. Ferri, R. Tuberosa, and M. C. Sanguineti. 2010. Characterization of root-yield-l.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J. Exp. Bot. 61(13) : 3553-3562. crossref(new window)

42.
Langridge, P. and M. P. Reynolds. 2015. Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology. 32 : 130-135. crossref(new window)

43.
Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25 : 275-294. crossref(new window)

44.
Lebreton, C., V. Lazic-jancic, A. Steed, S. Pekic, and S. A. Quarrie. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46(7) : 853-865. crossref(new window)

45.
Lee, E. and W. F. Tracy. 2009. Modern Maize Breeding. In: Bennetzen and S. Hake (eds). Handbook of Maize; Vol. 2. Genetics and Genomics. Springer Science, New York, NY. pp. 141-162.

46.
Li, L., V. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedling of two maize cultivars subjected to water stress. Plant Growth Regul. 25(2) : 81-87. crossref(new window)

47.
Liu, Y., C. Subhash, J. Yan, C. Song, J. Zhao, and J. Li. 2011. Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 71 : 158-165. crossref(new window)

48.
Lu, Y., Z. Hao, C. Xie, J. Crossa, J.-L. Araus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res. 124 : 37-45. crossref(new window)

49.
Mano, Y., M. Muraki, M. Fujimori, T. Takamizo, and B. Kindiger. 2005. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica. 142 : 33-42. crossref(new window)

50.
Messmer, R., Y. Fracheboud, M. Banziger, P. Stamp, and J. Ribaut. 2011. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Res. 124 : 93-103. crossref(new window)

51.
Metsker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11(1) : 31-46. crossref(new window)

52.
Morizet, T., M. Pllucsck, and D. Togola. 1983. Drought tolerance in four varieties. Field Crops Abst. 39 : 306, 1986.

53.
NeSmith, D. S. and J. T. Ritchie. 1992. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 28 (3) : 251-256. crossref(new window)

54.
Obeng-Bio, E., M. Bonsu, K. Obeng-Antwi, and R. Akromah. 2011. Establishing the basis for drought tolerance in maize (zea mays L.) using some secondary traits in the field. Afr. J. Plant Sci. 5(12) : 702-709.

55.
Opitz, N., A. Paschold, C. Marcon, W. A. Malik, C. Lanz, H.-P. Piepho, and F. Hocholdinger. 2014. Transcriptomic comoplexity in young maize primary roots in response to low water potentials. BMC genomics. 15 : 741. crossref(new window)

56.
Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. Lincoln, and S. E. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335 : 721-726. crossref(new window)

57.
Pelleschi, S., S. Guy, J. Kim, C. Pointe, A. Mahe, L. Barthes, A. Leonardi, and J. Prioul. 1999. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol. Biol. 39 : 373-380. crossref(new window)

58.
Poroyko, V., W. Spollen, L. Hejlek, A. Hernandez, M. LeNoble, G. Davis, H. Hguyen, G. Springer, R. Sharp, and H. Bohnert. 2007. Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. J. Exp. Bot. 58(2) : 279-289. crossref(new window)

59.
Rajcan, I. and M. Tollenaar. 1999. Source-sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during the grain-filling period. Field Crop Res. 90 : 245-253.

60.
Ramadan, H. A., S. N. Al-Niemi, and T. T. Handan. 1985. Water stress, soil type and phosphorus effects on corn and soybean, I. Effect on growth. Iraqi. J. Agri. Sci. Sanco 3 : 137-144.

61.
Ramanjulu, S. and D. Bartels. 2002. Drought- and desiccation-induced modulation of gene espression in plants. Plant Cell Environ. 25 : 141-151. crossref(new window)

62.
Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202. crossref(new window)

63.
Rhoads, F. M. and J. M. Bennett. 1990. Corn. Chapter 19 in Irrigation of Agricultural Crops. pp. 569-596. ASA-CSSA-SSSA, Mono No. 30, B.A. Stewart and D.R. Nielsen (Eds.).

64.
Ribaut, J. M., D. A. Hoisington, J. A. Deutsch, C. Jiang, and D. Gonzalez-de-Leon. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92 : 905-914. crossref(new window)

65.
Richards, R. A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manage. 80 : 197-211. crossref(new window)

66.
Ruta, N., M. Liedgens, Y. Fracheboud, P. Stemp, and Z. Hund. 2010. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor. Appl. Genet. 120 : 621-631. crossref(new window)

67.
Sanguineti, M. C., R. Tuberosa, P. Landi, S. Salvi, M. Maccaferri, E. Casarini, and S. Conti. 1999. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50(337) : 1289-1297. crossref(new window)

68.
Sari-Gorla, M., P. Krajewski, N. Di Fonzo, M. Villa, and C. Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99 : 289-295. crossref(new window)

69.
Saruhan, N., A. Saglam, and A. Kadioglu. 2012. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta. Physiol. Plant. 34 : 97-106. crossref(new window)

70.
Schussler, J. R. and M. E. Westgate. 1991. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci. 31 : 1196-1203. crossref(new window)

71.
Seo, Y, K. Park, E. Chang, S. Ryu, J. Park, and K. Kim. 2014. Effect of salicylic acid and abscisic acid on drought stress of waxy corn. Korean J. Crop Sci. 59(1) : 54-58. crossref(new window)

72.
Serraj, R. and T. R. Sinclair. 2002. Osmolyte accumulation: can it really increase crop yield under drought conditions? Plant Cell Environ. 25 : 333-341. crossref(new window)

73.
Sharp, R. E., V. Poroyko, L. G. Hejlek, W. G. Spollen, G. K. Springer, H. J. Bohnet, and T. Nguyen. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55 : 2343-2351. crossref(new window)

74.
Shaw, R. H. 1988. Climate requirement. Chapter 10 in corn and corn improvement. Third Edition. Pp. 609-638. ASA-CSSASSSA, Mono No. 18, G.F. Sprague and J.W. Dudley (Eds.). 986 pp.

75.
Slafer, G. A., J. L. Araus, C. Royo, and L. F. G. Del Moral. 2005. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann. Appl, Biol. 146 : 61-70. crossref(new window)

76.
Song, K., K.-H. Kim, H. C. Kim, J.-C. Moon, J. Y. Kim, S.-B. Baek, Y.-U. Kwon, and B.-M. Lee. 2015. Evaluation of drought tolerance in maize seedling using leaf rolling. Korean J. Crop Sci. 60(1) : 8-16. crossref(new window)

77.
Spollen, W., W. Tao, B. Valliyodan, K. Chen, L. Hejlek, J.-J. Kim, M. LeNoble, J. Zhu, H. Bohnert, D. Henderson, D. P. Schachtman, G. E. Davis, G. K. Springer, R. E. Sharp, and H. T. Nguyen. 2008. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol. 8(1) : 32. crossref(new window)

78.
Stuber, C. W., M. D. Edwards, and J. F. Wendel. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. factors influencing yield and its component traits. Crop Sci. 27(4) : 639-648. crossref(new window)

79.
Tuberosa, R., M. C. Sanguineti, P. Landi, S. Salvi, E. Casarini, and S. Conti. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of droughtstressed maize (Zea mays L.). Theor. Appl. Genet. 97 : 744-755. crossref(new window)

80.
Tuberosa, R., M. C. Sanguineti, P. Landi, M. M. Giuliani, S. Salvi, and S. Conti. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48 : 697-712. crossref(new window)

81.
Tyerman, S. D., C. M. Niemietz, and H. Bramley. 2002. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ. 25 : 173-194. crossref(new window)

82.
Udomprasert, N., J. Kijjanon, K. Chusri-iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kasetsart J. (Nat. Sci.) 39 : 546-551.

83.
Vargas, M., F. A. Eeuwijk, J. Crossa, and J. Ribaut. 2006. Mapping QTLs and QTL$\times$environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor. Appl. Genet. 112 : 1009-1023. crossref(new window)

84.
Vaughan, M. M., S. Christensen, E. A. Schmelz, A. Huffaker, H. J. McAuslane, H. T. Alborn, M. Romero, L. H. Allen, and P. E. A. Teal. 2015. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. doi: 10.1111/pce.12482. crossref(new window)

85.
Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil. 2014. Bioethanol production: Feedstock and current technologies. J. of Environ. Chem. Eng. 2(1) : 573-584. crossref(new window)

86.
Voothuluru, P., H. J. Thompson, S. A. Flint-Garcia, and R. E. Sharp. 2013. Genetic variability of oxidase oxalate activity and elongation in water-stressed primary roots of diverse maize and rice lines. Plant Signal. Behav. 8(3) : e23454. crossref(new window)

87.
Walter, A. and U. Shurr. 2005. Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann. Not. 95 : 891-900.

88.
Weerathaworn, P., A. Soldati, and P. Stamp. 1992. Anatomy of seedling roots of tropical maize (Zea mays L.) cultivars at low water supply. J. Exp. Bot. 43 : 1015-1021. crossref(new window)

89.
Welcker, C., B. Boussuge, C. Bencivenni, J. Ribaut, and F. Tardieu. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J. Exp. Bot. 58(2) : 339-349.

90.
Welcker, C., W. Sadok, G. Dignat, M. Renault, S. Salvi, A. Charcosset, and F. Tardieu. 2011. A common genetic determinism for sensitivities to soil water deficit and evaporative demand : meta-analysis of quantitative trait loci and introgression lines of maize. Plant physiol. 157 : 718-729. crossref(new window)

91.
Westgate, M. E. and J. S. Boyer. 1985. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164 : 540-549. crossref(new window)

92.
Westgate, M. E. and D. L. T. Grant. 1989. Water deficits and reproduction in maize: Response of the reproductive tissue to water deficits at anthesis and mild grainfill. Plant Physiol. 91 : 862-867. crossref(new window)

93.
Xiao, Y.-N., X.-H. Li, S.-H. Zhang, X.-D. Wang, M.-S. Li, and Y.-L. Zheng. 2004. Identification of quantitative trait loci (QTLs) for flowering time using SSR marker in maize under water stress. Korean J. Genetics. 26(4) : 405-413.

94.
Xiao, Y. N., X. H. Li, M. L. George, M. S. Li, S. H. Zhang, and Y. L. Zheng. 2005. Quantitative trait locus analysis of drought tolerance and yield in maize in china. Plant Mol. Biol. Report. 23 : 155-165. crossref(new window)

95.
Xue, Y., L. M. L. Warburton, M. Sawkins, X. Zhang, T. Setter, Y. Xu, P. Grudloyma, J. Gethi, J.-M. Ribaut, W. Li, X. Zhang, Y. Zheng, and J. Yan. 2013. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Gene. 126 : 2587-2596. crossref(new window)

96.
Zamaninejad, M., S. K. Khorasani, M. J. Moeini, and A. R. Heidarian. 2013. Effect of salicylic acid on morphological characteristics, yield and yield components of Corn (Zea mays L.) under drought condition. Euro. J. Exp. Bio. 3(2) : 153-161.

97.
Zheng, J., J. Zhao, Y. Tao, J. Wang, Y. Liu, J. Fu, Y. Jin, P. Gao, J. Zhang, Y. Bai, and G. Wang. 2004. Isolation and analysis of water stress-induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol. Biol. 55(6) : 807-823. crossref(new window)

98.
Ziyomo, C. and R. Bernardo. 2013. Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Sci. 53 : 1269-1275. crossref(new window)