JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Flowering Patterns of Miscanthus Germplasms in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KOREAN JOURNAL OF CROP SCIENCE
  • Volume 60, Issue 4,  2015, pp.510-517
  • Publisher : The Korean Society of Crop Science
  • DOI : 10.7740/kjcs.2015.60.4.510
 Title & Authors
Flowering Patterns of Miscanthus Germplasms in Korea
An, Gi-Hong; Um, Kyoung-Ran; Lee, Jun-Hee; Jang, Yun-Hui; Lee, Ji-Eun; Yu, Gyeong-Dan; Cha, Young-Lok; Moon, Yun-Ho; Ahn, Jong-Woong;
  PDF(new window)
 Abstract
Miscanthus has been considered as the most promising bioenergy crop for lignocellulosic biomass production. In Korea, M. sacchariflorus and M. sinensis can be found easily in all regions. It is a great advantage to utilize as important species with respect to genetic and cross-breeding programs materials for creation of novel hybrids. For successful breeding programs, it is important to precisely understand the variability of flowering traits among Miscanthus species as breeding parents materials. In this study, flowering traits were observed daily in 960 germplasms of two Miscanthus species (M. sacchariflorus and M. sinensis) for growing seasons over 2 years. The flowering process was divided into three stages. ST (sprouting time) was recorded when first leaf of the plant emerged on soil. FS1 (flowering stage 1) and FS2 (flowering stage 2) were recorded when flag leaf was firstly observed, and 1 cm of panicle was showing on at least one stem, respectively. For 2013 and 2014, the latest germplasms exerted flag leaf, i.e. September 30 (DOY of FS1 164.1) and September 4 (DOY of FS1 141.0) occurred M. sacchariflorus cv. Geodae 1 and M. sacchariflorus cv. Uram collected from Southern Korea (Jeollanam-do), while Miscanthus germplasms collected from northern Korea (Gyeonggi-do) which emerged the earliest flag leaf in July and August, significantly decreased DOY. For DOY from ST to FS2, M. sacchriflorus germplasms ranged from 140 to 190 days, and 110 to 170 days for 2013 and 2014. The highest frequency showed to 160 days for 2013, and 150 days for 2014. In M. sinensis germplasms, the highest frequency showed to 180 days for 2013, and 170 days for 2014. In the results of correlation between the day of years from ST to FS2 for 2013 and 2014, M. sacchriflorus and M. sinensis showed high coefficient of correlation (0.70 and 0.89). It can be supposed that flowering characteristics of Miscanthus are largely affected by the unique phenotypic characteristic of native habitat than environmental factors of the current planted site. This study for flowering traits of Miscanthus may provides an important information in order to expedite the introduction as breeding materials for creation of new hybrid.
 Keywords
bioenergy crop;emergence of flag leaf;flowering stage;miscanthus;transition of the plant meristem;
 Language
Korean
 Cited by
1.
전년도 생육 억새의 늦은 수확이 당년 생육특성과 수량에 미치는 영향,문윤호;이지은;유경단;차영록;안기홍;안종웅;송연상;이경보;

한국작물학회지, 2016. vol.61. 3, pp.215-221 crossref(new window)
1.
Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year’S Yield and Growth Characteristics, The Korean Journal of Crop Science, 2016, 61, 3, 215  crossref(new windwow)
 References
1.
An, G. H., J. K. Kim, Y. H. Moon, Y. L. Cha, Y. M. Yoon, B. C. Koo, and K. G. Park. 2013. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker. Bioprocess Biosyst. Eng. 36 : 695-703. crossref(new window)

2.
Arnoult, S., M. Quillet, and M. Brancourt-Hulmel. 2014. Miscanthus clones display large variation in floral biology and different environmental sensitivities useful for breeding. Bioenerg. Res. 7 : 430-441. crossref(new window)

3.
Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 33 : 752-759. crossref(new window)

4.
Caddel, J. L. and D. E. Weibel. 1971. Effect of photoperido and temperature on the development of sorghum. Agronomy J. 63 : 799-803. crossref(new window)

5.
Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. -U. Schwarz, K. Tayebi, and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 93 : 1013-1019. crossref(new window)

6.
Clifton-Brown, J. C. and I. Lewandowski. 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European J. Agro. 16 : 97-110. crossref(new window)

7.
Craufurd, P. Q., D. J. Flower, and J. M. Peacock. 1993. Effect of heat and drought stress on sorghum(Sorghum bicolor). 1. Panicle development and leaf appearance. Exp. Agri. 29 : 61-76. crossref(new window)

8.
Craufurd, P. W. and A. M. Qi. 2001. Photothermal adaptation of sorghum (Sorghum bicolor) in Nigeria. Agri. Forest Meteorol. 108 : 199-211. crossref(new window)

9.
Deuter, M. 2000. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In: Lewandowski, I. J. Clifton-Brown. European Miscanthus improvement Final Report. pp. 28-52.

10.
Ellis, R. H., A. Qi, P. Q. Craufurd, R. J. Summerfield, and E. H. Roberts. 1997. Effects of photoperiod, temperature and asynchrony between thermoperiod and photoperiod on development to panicle initiation in Sorghum. Annals Botany. 79 : 169-178. crossref(new window)

11.
Engler, H. G. A. and K. A. E. Prantl. 1887. In: Nat. Pflanzenfam. 2(2) : 23.

12.
Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197. crossref(new window)

13.
Hammer, G. L., R. L. Vanderlip, G. Gibson, L. J. Wade, R. G. Henzell, D. R. Younger, J. Warren, and A. B. Dale. 1989. Genotype-by-environment interaction in grain-Sorghum. 2. Effects of temperature and photoperiod on ontogeny. Crop Sci. 29 : 376-384. crossref(new window)

14.
Heaton, E. A., F. G. Dohleman, A. F. Miguez, J. A. Juvik, V. Lozovaya, J. Widholm, O. A. Zaborina, G. F. Mclsaac, M. B. David, T. B. Voigt, N. N. Boersma, and S. P. Long. 2010. Miscanthus. A promising biomass crop. Advance Bot. Res. 56 : 75-137. crossref(new window)

15.
Jensen, E., K. Farrar, S. Thomas-Jones, A. Hastings, I. Donnison, and J. Clifton-Brown. 2011. Chaacterization of flowering time diversity in Miscantus species. GCB Bioenergy 3 : 387-400. crossref(new window)

16.
Jensen, E., P. Robson, J. Norris, A. Cookson, K. Farrar, I. Donnison, and J. Clifton-Brown. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J. Exp. Botany 64(2) : 541-552. crossref(new window)

17.
Karsai, I., P. Szucs, B. Koszegi, P. M. Hayes, A. Casas, Z. Bedo, and O. R. N. Veisz. 2008. Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J. Exp. Botany 59 : 2707-2715. crossref(new window)

18.
Lewandowski, I., J. C. Clifton-Brown, J. M. O. Scurlock, and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19 : 209-227. crossref(new window)

19.
Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339. crossref(new window)

20.
Yan, J. W. Chen, F. Luo, H. Ma, A. Meng, X. Li, M. Zhu, S. Li, A. Zhou, W. Zhu, B. Han, S. Ge, J. Li, and T. Sang. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4 : 49-60. crossref(new window)

21.
Yook, M. J., S. H. Lim, J. S. Song, J. W. Kim, C. J. Zhang, E. J. Lee, Y. Ibaragi, G. J. Lee, G. Nah, and D. S. Kim. 2014. Assessment of genetic diversity of Korean Miscanthus using morphological traits and SSR markers. Biomass Bioenerg. 66 : 81-92. crossref(new window)