JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Economic and Environmental Geology
  • Volume 49, Issue 1,  2016, pp.23-30
  • Publisher : The Korean Society of Economic and Environmental Geology
  • DOI : 10.9719/EEG.2016.49.1.23
 Title & Authors
Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions
Im, Junhyuck; Lee, Yongjae;
  PDF(new window)
 Abstract
Powder samples of natural lawsonite (Ca-lawsonite, ) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus () of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a
 Keywords
lawsonite;high-pressure study;subduction zone;bulk modulus;linear compressibility;
 Language
Korean
 Cited by
1.
The high-pressure phase of lawsonite: A single crystal study of a key mantle hydrous phase, Journal of Geophysical Research: Solid Earth, 2017, 122, 8, 6294  crossref(new windwow)
 References
1.
Angel, R.J. (2000) Equations of state. In: Hazen RM, Downs RT, (eds). Reviews in mineralogy and geochemistry: high-temperature and high-pressure crystal chemistry, vol 41. The Mineralogical Society of America, Washington, DC, p.35-58.

2.
Baur, W.H. (1978) Crystal structure refinement of lawsonite. American Mineralogist, v.63, p.311-315..

3.
Bell, P.M. and Mao, H.K. (1979) Absolute pressure measurements and their comparison with the ruby fluorescence (R1) pressure scale to 1.5 Mbar. Carnegie Institution, Washington Year Book, v.78, p.665-669.

4.
Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, v.91, p.4673-4676. crossref(new window)

5.
Chinnery, N., Pawley, A.R. and Clark, S.M. (2000) The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability. American Mineralogist, v.85, p.1001-1008. crossref(new window)

6.
Comodi, P. and Zanazzi, P.F. (1996) Effects of temperature and pressure on the structure of lawsonite. American Mineralogist, v.81, p.833-841. crossref(new window)

7.
Daniel, I., Fiquet, G., Gillet, P., Schmidt, M.X. and Hanfland, M. (2000) High-pressure behavior of lawsonite: a phase transition at 8.6 GPa. European Journal of Mineralogy, v.12, p.721-733. crossref(new window)

8.
Diessel, C.F.K., Brothers, R. and Black, P.M. (1978) Coalification and graphitization in high-pressure schists in New Caledonia. Contributions to Mineralogy and petrology, v.68, p.63-78. crossref(new window)

9.
Dorsam, G., Liebscher, A., Wunder, B., Franz, G. and Gottschalk, M. (2011) Synthesis of Pb-zoisite and Pblawsonite. Neues Jahrbuch fur Mineralogie - Abhandlungen, v.188, p.99-110 crossref(new window)

10.
Essene, E.J., Fyfe, W.S. and Turner, F.J. (1965) Petrogenesis of Franciscan glaucophane schists and associated metamorphic rocks, California. Contributions to Mineralogy and petrology, v.11, p.695-704 crossref(new window)

11.
Gatta, G.D. and Lee, Y. (2014) Zeolites at high pressure: A review. Mineralogical Magazine, v.78(2), p.267-291. crossref(new window)

12.
Hazen, R.M. and Finger, L.W. (1982) Comparative crystal chemistry. Wiley, New York.

13.
Helmstaedt, H. and Doig, R. (1975) Eclogite nodules from kimberlite pipes of the colorado Plateau - samples of subducted Franciscan-type oceanic lithosphere. Physics and Chemistry of the Earth, v.9, p.95-111. crossref(new window)

14.
Im, J., Lee, Y., Douglas, A.B., Vogt, T. and Lee, Y. (2016) High-pressure and high-temperature transformation of Pb(II)-natrolite to Pb(II)-lawsonite. Dalton Transaction, v.45, p.1622-1630. crossref(new window)

15.
Larson, A.C. (1986) GSAS; general structure analysis system. Los Alamos National Laboratory, New Mexico.

16.
LeBail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of $LiSbWO_6$ by powder X-ray diffraction. Materials Research Bulletin, v.23, p.447-452. crossref(new window)

17.
Lee, Y., Hriljac, J.A., Studer, A. and Vogt, T. (2004) Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. Physics and Chemistry of Minerals, v.31, p.22-27. crossref(new window)

18.
Lemonnier, M., Fourme, R., Rosseaux, F. and Kahn, R. (1978) X-ray curved-crystal monochromator system at the storage ring DCI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v.152, p.173-177.

19.
Liebscher, A., Dorsam, G., Franz, G., Wunder, B. and Gottschalk, M. (2010) Crystal chemistry of synthetic lawsonite solid-solution series $CaAl_2$ [$(OH)_2/Si_2O_7$] ${\cdot}$ $H_2O$-$SrAl_2$[$(OH)_2$/$Si2O_7$]${\cdot}$ $H_2O$ and the Cmcm-$P2_1$/m phase transition. American Mineralogist, v.95, p.724-735. crossref(new window)

20.
Martin, L.A.J., Hermann, J., Gauthiez-Putallaz, L., Whitney, D.L., Vitale Brovarone, A., Fornash, K.F. and Evans N.J. (2014) Lawsonite geochemistry and stability- implication for trace element and water cycles in subduction zones. Journal of Metamorphic Geology, v.32, p.455-478. crossref(new window)

21.
Millar, D.I.A. (2012) Energetic Materials at Extreme Conditions. Springer Theses, p.31.

22.
Merrill, L. and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single-crystal X-ray diffraction studies. Review of Scientific Instruments, v.45, p.290-294. crossref(new window)

23.
Okamoto, K. and Maruyama, S. (1999) The high-pressure synthesis of lawsonite in the MORB+$H_2O$ system. American Mineralogist, v.84, p.362-373. crossref(new window)

24.
Pawley, A.R. and Holloway, J.R. (1993) Water sources for subduction zone volcanism: new experimental constraints. Science, v.260, p.664-667. crossref(new window)

25.
Pawley, A.R. (1994) The pressure and temperature stability limits of lawsonite - implications for $H_2O$ recycling in subduction zones. Contributions to Mineralogy and Petrology, v.118, p.99-108. crossref(new window)

26.
Pawley, A.R. and Allan, D.R. (2001) A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, v.65(1), p.41-58. crossref(new window)

27.
Schmidt, M.W. and Poli, S. (1994) The stability of lawsonite and zoisite at high-pressure: experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth and Planetary Science Letters, v.124, p.105-118. crossref(new window)

28.
Schmidt, M.W. and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, v.163, p.361-379. crossref(new window)

29.
Smith, G.C. (1991) X-ray imaging with gas proportional detectors. Synchrotron Radiation News, v.4, p.24-30.

30.
Spandler, C., Hermann, J., Arculus, R. and Mavrogenes, J. (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, v.146, p.205-222. crossref(new window)

31.
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Appllied Crystallography, v.34, p.210-213. crossref(new window)

32.
Tribuzio, R., Messiga, B., Vannucci, R. and Bottazzi, P. (1996) Rare earth element redistribution during highpressure-low-temperature in ophiolitic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zones. Geology, v.24, p.711-714. crossref(new window)

33.
Zack, T., Foley, S.F. and Rivers, T. (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, v.43, p.1947-1974. crossref(new window)