JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Rock Physics Modeling: Report and a Case Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Economic and Environmental Geology
  • Volume 49, Issue 3,  2016, pp.225-242
  • Publisher : The Korean Society of Economic and Environmental Geology
  • DOI : 10.9719/EEG.2016.49.3.225
 Title & Authors
Rock Physics Modeling: Report and a Case Study
Lee, Gwang H.;
  PDF(new window)
 Abstract
Rock physics serves as a useful tool for seismic reservoir characterization and monitoring by providing quantitative relationships between rock properties and seismic data. Rock physics models can predict effective moduli for reservoirs with different mineral components and pore fluids from well-log data. The distribution of reservoirs and fluids for the entire seismic volume can also be estimated from rock physics models. The first part of this report discusses the Voigt, Reuss, and Hashin-Shtrikman bounds for effective elastic moduli and the Gassmann fluid substitution. The second part reviews various contact models for moderate- to high-porosity sands. In the third part, constant-cement model, known to work well for the sand that gradually loses porosity with deteriorating sorting, was applied to the well-log data from an oil field in the North Sea. Lastly, the rock physics template constructed from the constant-cement model and the results from the prestack inversion of 2D seismic data were combined to predict the lithology and fluid types for the sand reservoir of this oil field.
 Keywords
rock physics modeling;seismic reservoir characterization;prestack inversion;
 Language
Korean
 Cited by
 References
1.
Avseth, P. (2010) Explorational rock physics - The link between geological processes and geophysical observables, in: K. Bjorlykke (ed.) Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Springer. 508p.

2.
Avseth, P., Jorstad, A., van Wijngaarden, A.-J. and Mavko, G. (2009) Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones.

3.
Avseth, P., Mukerji, T. and Mavko, G. (2005) Quantitative Seismic Interpretation: Applying Rock Physics to Reduce Interpretation Risk. Cambridge University Press, Cambridge, UK, 359p.

4.
Avseth, P., Dvorkin, J., Mavok, G. and Rykkje, J. (2000) Rock physics diagnostic of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letter, v.27, p.2761-2764. crossref(new window)

5.
Batzle, M. and Wang, Z. (1992) Seismic properties of pore fluids. Geophysics, v.57, p.1396-1408. crossref(new window)

6.
Berge, P.A., Berryman, J.G. and Bonner, B.P. (1993) Influence of microstructure on rock elastic properties. Geophysical Research Letters, v.20, p.2619-2622 crossref(new window)

7.
Berryman, J.G. (1980) Long-wavelength propagation in composite elastic media. Journal of Acoustical Society of America, v.68, p.1890-1831. crossref(new window)

8.
Berryman, J.G. (1992) Single-scattering approximations for coefficients in Biot's equations of poroelasticity. Journal of Acoustical Society of America, v.91, p.551-571. crossref(new window)

9.
Berryman, J.G. (1995) Mixture of rock properties: Rock physics and phase relations. A Handbook of Physical Constants. American Geophysical Union Reference Shelf, v.3, p.205-228. crossref(new window)

10.
Berryman, J.G. (1999) Origin of Gassmann's equations. Stanford Exploration Project, Report, v.102, p.187-192.

11.
Clearly, M.P., Chen, I.-W. and Lee, S.-M. (1980) Self-consistent techniques for heterogeneous media. American Society of Civil Engineers, v.106, p.861-887.

12.
Domenico, S.N. (1976) Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, v.41, p.882-894. crossref(new window)

13.
Dvorkin, J. and Gutierrez, M. (2001) Textural sorting effect on elastic velocities, Part II: Elasticity of a bimodal grain mixture. Society of Exploration Geophysicists 71st Annual International Meeting, p.1764-1767.

14.
Dvorkin, J. and Gutierrez, M. (2002) Grain sorting, porosity, and elasticity. Petrophysics, v.43, p.185-196.

15.
Dvorkin, J., Nur, A. and Yin, H. (1994) Effective properties of cemented granular material. Mechanical Materials, v.18, p.351-366. crossref(new window)

16.
Dvorkin, J., Mavko, G. and Nur, A. (1991) The effect of cementation on the elastic properties of granular material, Mechanics of Materials, v.12, p.207-217. crossref(new window)

17.
Dvorkin, J. and Nur. A. (1996) Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, v.61, p.1363-1370. crossref(new window)

18.
Dvorkin, J. and Nur, A. (2000) Critical-porosity models, in: A. Huffman and A. Nur (eds.), Pressure Regimes in Sedimentary Basins and Their Prediction: AAPG Memoir, 76, p.33-41.

19.
Dvorkin, J., Gutierrez, A. and Nur, A. (2002) On the university of diagenetic trends. The Leading Edge, v.21, p.40-43. crossref(new window)

20.
Garcia, X. and Medina, E.A. (2006) Hysteresis effects studied by numerical simulations: cyclic loading-unloading of a realistic sand model. Geophysics, v.71, p.F13-F20. crossref(new window)

21.
Gassmann, F. (1951) Uber die elastizitat poroser medien. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zurich, v.96, p.1-23.

22.
Hampson, D.P., Russell, B.H. and Bankhead, B. (2005) Simultaneous inversion of pre-stack seismic data. 75th Annual International Meeting, SEG, Expanded Abstracts, v.24, p.1633-1637.

23.
Hashin, Z. and Shtrikman, S. (1963) A variational approach to the elastic behavior of multiphase materials. Journal of Mechanical and Physical Solids, v.11, p.127-140. crossref(new window)

24.
Jacoby, M., Dvorkin, J. and Liu, X. (1995) Elasticity of partially saturated frozen sand. Geophysics, v.61, p.288-293.

25.
Marion, D. (1990) Acoustical, mechanical and transport properties of sediments and granular materials. Unpublished Ph.D. thesis, Stanford University.

26.
Marion, D., Nur, A., Yin, H. and Han, D. (1992) Compressional velocity and porosity in sand-clay mixtures. Geophysics, v.57, p.554-563. crossref(new window)

27.
Maske, H.A., Gland, N., Johnson, D.L. and Schwartz, L.M. (2004) Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E L70, 061302.1-061302.19.

28.
Mavko, G. and Mukerji, T. (1995) Seismic pore space compressibility and Gassmann's relation. Geophysics, v.60, p.1743-1749. crossref(new window)

29.
Mavko, G., Mukerji, T. and Dvorkin, J. (2009) The Rock Physics Handbook (2nd edition). Cambridge University Press, Cambridge, UK. 511p.

30.
Mindlin, R.D. (1949) Compliance of bodies in contact. Journal of Applied Mechanics, v.16, p.259-268.

31.
Misaghi, A., Negahban, S., Landro, M. and Javaherian, A. (2010) A comparison of rock physics models for fluid substitution in carbonate rocks. Exploration Geophysics, v.41, p.146-154. crossref(new window)

32.
Moyano, B., Jensen, E.H. and Johansen, T.A., 2011. Improved quantitative calibration of rock physics models. Petroleum Geoscience, v.17, p.345-354. crossref(new window)

33.
Murphy, W.F.III, 1982. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Unpublished Ph.D. thesis, Stanford University.

34.
O'Connell, R.J. and Budiansky, B. (1974) Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, v.82, p.5719-5735.

35.
Odegaard, E. and Avseth, P. (2003) Interpretation of elastic inversion results using rock physics templates. European Associate of Geoscientists and Engineers, Expanded Abstracts, E17.

36.
Park, C. and Nam, M.J. (2014) A review on constructing seismic rock physics models based on Gassmann's equation for reservoir fluid substitution. Journal of Korean Society of Minerals and Energy Resources Engineering, v.51, p.448-467.

37.
Reuss, A. (1929) Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, v.9, p.49-58.

38.
Russell, B. (2013) A Gassmann-consistent rock physics template. CSEG Recorder, v.38, p.22-30.

39.
Simm, R. and Bacon, M. (2014) Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press, Cambridge, UK. 271p.

40.
Voigt, W. (1910) Lehrbuch der Kristallphysik, Leipzig und Berlin: B.G. Teubner, 964p.

41.
Wu, T.T. (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids Structures, v.2, p.1-8. crossref(new window)

42.
Yin, H. (1992) Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress induced anisotropy, Ph.D. thesis, Stanford University.

43.
Zimmerman, R.W. (1991) Elastic moduli of a solid containing spherical inclusions. Mechanics of Materials, v.12, p.17-24. crossref(new window)