Advanced SearchSearch Tips
Convolutional Neural Network-based System for Vehicle Front-Side Detection
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Convolutional Neural Network-based System for Vehicle Front-Side Detection
Park, Young-Kyu; Park, Je-Kang; On, Han-Ik; Kang, Dong-Joong;
This paper proposes a method for detecting the front side of vehicles. The method can find the car side with a license plate even with complicated and cluttered backgrounds. A convolutional neural network (CNN) is used to solve the detection problem as a unified framework combining feature detection, classification, searching, and localization estimation and improve the reliability of the system with simplicity of usage. The proposed CNN structure avoids sliding window search to find the locations of vehicles and reduces the computing time to achieve real-time processing. Multiple responses of the network for vehicle position are further processed by a weighted clustering and probabilistic threshold decision method. Experiments using real images in parking lots show the reliability of the method.
machine vision;deep learning;convolution neural network;vehicle detection;
 Cited by
Robust lip detection based on histogram of oriented gradient features and convolutional neural network under effects of light and background, Optik - International Journal for Light and Electron Optics, 2017, 136, 462  crossref(new windwow)
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," Proc. Computer Vision and Pattern Recognition, pp. 886-893, 2005.

D. G. Lowe, "Distinctive image features from scaleinvariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. crossref(new window)

Freund, Yoav, and Robert E, Schapire. "Experiments with a new boosting algorithm." International Conference on Machine Learning, vol. 96. pp. 148-156, 1996.

C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, pp. 273-297, 1995.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, "Selective search for object recognition," International Journal of Computer Vision, vol. 104, no. 2, pp. 154-171, 2013. crossref(new window)

P. Viola and M. Jones, "Robust real-time face detection," International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004. crossref(new window)

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, "Object detection with discriminatively trained part based models," Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627-1645, 2010. crossref(new window)

G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, pp. 1527-1554, 2006. crossref(new window)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. of IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. crossref(new window)

A. Krizhevsky, I. Sutskever, and G. Hinton. "ImageNet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "OverFeat: Integrated recognition, localization and detection using convolutional networks," Proc. of International Conference on Learning Representations, 2014.

Y. Jia, "Caffe: An open source convolutional architecture for fast feature embedding,", 2013.

Comaniciu, Dorin, and Peter Meer, "Mean shift: A robust approach toward feature space analysis," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 5, pp. 603-619, 2002. crossref(new window)

I. S. Cho, J. H. Lee, and S. J. Oh, "Development of the flexible user-friendly real-time machine vision inspection system," Journal of the Institute of Electronics Engineers of Korea, vol. 45, no. 3, pp. 42-50, May 2008.

I. S. Oh, "Pattern recognition," Kyobobook, 2008.

S. M. Yang and K. H. Jo. "HOG based pedestrian detection and behavior pattern recognition for traffic signal control," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 19, no. 11, pp. 1017-1021, 2013. crossref(new window)

S. W. Lee, J. W. Jang, and K. R. Baek, "Pedestrian detection algorithm using a gabor filter bank," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20, no. 9, pp. 930-935, 2014. crossref(new window)