JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect
Lee, Sang-Deok; Jung, Seul;
 
 Abstract
Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.
 Keywords
GYROBO;CMG;inverse gyroscopic effect;least square method;
 Language
Korean
 Cited by
1.
Design of a Fuzzy Compensator for Balancing Control of a One-wheel Robot, The International Journal of Fuzzy Logic and Intelligent Systems, 2016, 16, 3, 188  crossref(new windwow)
 References
1.
L. Morine, T. O'Connor, J. Carnazza, H. Varner, and D. Pool, Control Moment Gyroscope Gimbal Actuator Study, Bendix Corp. TETERBORO NJ ECLIPSE-PIONEER DIV, 1966.

2.
V. J. Lappas, W. H. Steyn, and C. I. Underwood, "Attitude control for small satellites using control moment gyros," Acta Astronautica, vol. 51, pp. 101-111, 2002. crossref(new window)

3.
E. Mumm, K. Davis, M. Mahihn, D. Neal, and R. Hyayes, "Miniature control moment gyroscope development," IEEE Aerospace Conference, pp. 1-9, 2014.

4.
S. B. Cardini, "A history of the monocycle stability and control from inside the wheel," IEEE Control System, vol. 26, no. 5, pp. 22-26, 2006. crossref(new window)

5.
H. B. Brown and Y. S. Xu, "A single wheel, gyroscopically stabilized robot," Proc. of the IEEE Robotics and Automation Magazine, vol. 4, no. 3, pp. 39-44, 1997.

6.
Y. S. Xu, H. B. Brown, and A. W. Kwok, "Dynamic mobility with single-wheel configuration," The International Journal of Robotics Research, vol. 18, no. 7, pp. 728-738, 1999. crossref(new window)

7.
Y. Xu and K. W. Au, "Stabilization and path following of a single wheel robot," IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, pp. 407-419, Jun. 2004. crossref(new window)

8.
P. K. Kim, J. H. Park, M. S. Ha, and S. Jung, "Implementation and balancing control of on-wheeled robot, GYROBO," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 19, no. 6, pp. 501-507, 2013. crossref(new window)

9.
J. H. Park and S. Jung, "Development and control of a single-wheel robot: Practical mechatronics approach," Mechatronics, vol. 23, no. 6 pp. 594-606, 2013.

10.
J. Fang and Y. Ren, "Decoupling control of a magnetically suspended rotor system in control moment gyros based on an inverse system method," IEEE/ASME Trans. Mechatronics, vol. 17, no. 6, pp. 1133-1144, Dec. 2012. crossref(new window)

11.
J. Fang and Y. Ren, "High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method," IEEE Trans. Ind. Electron, vol. 58, no. 9, pp. 4331-4342, 2011. crossref(new window)

12.
Z. S. Wang, "Application of adaptive interference suppressor to gimbal of MSCMG," 2013 Fourth International Conference on Digital Manufacturing and Automation (ICDMA), pp. 267-269, 2013.

13.
S. R. Vadali, H. Oh, and S. Walker, "Preferred gimbal angles for single-gimbal conrol moment gyroscopes," Journal of Guidance, Control, and Dynamics, vol. 13, no. 6, pp. 1090-1095, 1990. crossref(new window)

14.
S. D. Lee and S. Jung, "An experimental approach to inverse gyroscopic effect: GYROBO," Proc. of 2015 30th ICROS Annual Conference (in Korean), Daejeon Korea, May 2015.

15.
S. D. Lee and S. Jung, "Vibration control of a single-wheel robot using filter design," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 21, no. 9, pp. 863-868, 2015. crossref(new window)