JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : ALGAE
  • Volume 31, Issue 1,  2016, pp.17-31
  • Publisher : The Korean Society of Phycology
  • DOI : 10.4490/algae.2016.31.2.2
 Title & Authors
Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae
Jang, Se Hyeon; Jeong, Hae Jin; Lim, An Suk; Kwon, Ji Eun; Kang, Nam Seon;
  PDF(new window)
 Abstract
To explore the feeding ecology of the newly described heterotrophic dinoflagellate Aduncodinium glandula in the family Pfiesteriaceae, its feeding behavior and prey species were investigated. Additionally, the growth and ingestion rates of A. glandula on the mixotrophic dinoflagellates Heterocapsa triquetra and Akashiwo sanguinea, its optimal and suboptimal prey, respectively were measured. A. glandula fed on prey through a peduncle after anchoring to the prey using a tow filament. A. glandula ate all algal prey and perch blood cells tested and had the most diverse prey species in the family Pfiesteriaceae. Unlike for other pfiesteriacean species, H. triquetra and A. sanguinea support the positive growth of A. glandula. However, the cryptophytes Rhodomonas salina and Teleaulax sp. and the phototrophic dinoflagellate Amphidinium carterae did not support the positive growth of A. glandula. Thus, A. glandula may have a unique kind of prey and its optimal prey differs from that of the other pfiesteriacean dinoflagellates. With increasing mean prey concentration, the growth rates of A. glandula on H. triquetra and A. sanguinea increased rapidly and then slowed or became saturated. The maximum growth rates when feeding on H. triquetra and A. sanguinea were 1.004 and 0.567 d−1, respectively. Further, the maximum ingestion rates of A. glandula on H. triquetra and A. sanguinea were 0.75 and 1.38 ng C predator−1 d−1, respectively. There is no other pfiesteriacean species having H. triquetra and A. sanguinea as optimal and suboptimal prey. Thus, A. glandula may be abundant during blooms dominated by these species not preferred by the other pfiesteriacean dinoflagellates.
 Keywords
food web;harmful algal bloom;ingestion;peduncle;protist;red tide;
 Language
English
 Cited by
 References
1.
Baek, S. H., You, K., Katano, T. & Shin, K. 2010. Effects of temperature, salinity, and prey organisms on the growth of three Pfiesteria-like heterotrophic dinoflagellates. Plankton Benthos Res. 5:31-38. crossref(new window)

2.
Berge, T., Hansen, P. J. & Moestrup, Ø. 2008. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:279-288. crossref(new window)

3.
Burkholder, J. M. & Glasgow, H. B. Jr. 1997. Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol. Oceanogr. 45:1052-1075.

4.
Burkholder, J. M., Noga, E. J., Hobbs, C. H. & Glasgow, H. B. Jr. 1992. New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills. Nature 358:407-410. crossref(new window)

5.
Calado, A. J., Craveiro, S. C., Daugbjerg, N. & Moestrup, Ø. 2009. Description of Tyrannodinium gen. nov., a freshwater dinoflagellate closely related to the marine Pfiesteria-like species. J. Phycol. 45:1195-1205. crossref(new window)

6.
Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815. crossref(new window)

7.
Gifford, D. J. & Dagg, M. J. 1991. The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa. Mar. Microb. Food Webs 5:161-177.

8.
Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. crossref(new window)

9.
Hansen, P. J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114:327-334. crossref(new window)

10.
Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-μm body size range. Limnol. Oceanogr. 42:687-704. crossref(new window)

11.
Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189. crossref(new window)

12.
Jacobson, D. M. & Anderson, D. M. 1986. Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J. Phycol. 22:249-258. crossref(new window)

13.
Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396. crossref(new window)

14.
Jeong, H. J., Ha, J. H., Park, J. Y., Kim, J. H., Kang, N. S., Kim, S., Kim, J. S., Yoo, Y. D. & Yih, W. H. 2006. Distribution of the heterotrophic dinoflagellate Pfieteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes, and fish blood cells. Aquat. Microb. Ecol. 44:263-278. crossref(new window)

15.
Jeong, H. J., Ha, J. H., Yoo, Y. D., Park, J. Y., Kim, J. H., Kang, N. S., Kim, T. H., Kim, H. S. & Yih, W. H. 2007a. Feeding by the Pfiesteria-like heterotrophic dinoflagellate Luciella masanensis. J. Eukaryot. Microbiol. 54:231-241. crossref(new window)

16.
Jeong, H. J., Kim, J. S., Kim, J. H., Kim, S. T., Seong, K. A., Kim, T. H., Song, J. Y. & Kim, S. K. 2005a. Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar. Ecol. Prog. Ser. 295:69-78. crossref(new window)

17.
Jeong, H. J., Kim, J. S., Park, J. Y., Kim, J. H., Kim, S., Lee, I., Lee, S. H., Ha, J. H. & Yih, W. H. 2005b. Stoeckeria algicida n. gen., n. sp. (Dinophyceae) from the coastal waters off Southern Korea: morphology and small subunit ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 52:382-390. crossref(new window)

18.
Jeong, H. J., Kim, J. S., Song, J. Y., Kim, J. H., Kim, T. H., Kim, S. K. & Kang, N. S. 2007b. Feeding by protists and copepods on the heterotrophic dinoflagellates Pfiesteria piscicida, Stoeckeria algicida, and Luciella masanensis. Mar. Ecol. Prog. Ser. 349:199-211. crossref(new window)

19.
Jeong, H. J. & Latz, M. I. 1994. Growth and grazing rates of the heterotrophic dinoflagellate Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106:173-185. crossref(new window)

20.
Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S. & Lee, K. 2011. Feeding by the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense. J. Eukaryot. Microbiol. 58:511-524. crossref(new window)

21.
Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. crossref(new window)

22.
Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. crossref(new window)

23.
Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010a. Ecology of Gymnodinium aureolum: I. Feeding in western Korean waters. Aquat. Microb. Ecol. 59:239-255. crossref(new window)

24.
Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010b. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. crossref(new window)

25.
Kang, N. S., Jeong, H. J., Moestrup, Ø., Jang, T. Y., Lee, S. Y. & Lee, M. J. 2015. Aduncodinium gen. nov. and A. glandula comb. nov. (Dinophyceae, Pfiesteriaceae), from coastal waters off Korea: morphology and molecular characterization. Harmful Algae 41:25-37. crossref(new window)

26.
Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K. & Kim, G. 2011. Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from western Korean waters: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 58:152-170. crossref(new window)

27.
Klein Breteler, W. C. M. 1980. Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser. 2:229-233. crossref(new window)

28.
Landsberg, J. H., Steidinger, K. A., Blakesley, B. A. & Zondervan, R. L. 1994. Scanning electron microscope study of dinospores of Amyloodinium cf. ocellatum, a pathogenic dinoflagellate parasite of marine fish, and comments on its relationship to the Peridiniales. Dis. Aquat. Org. 20:23-32. crossref(new window)

29.
Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. W., Park, K. -T. & Lee, K. 2014. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. crossref(new window)

30.
Lessard, E. J. 1984. Oceanic heterotrophic dinoflagellates: distribution, abundance and role as microzooplankton. Ph.D. disseration, University of Rhode Island, Kingston, RI, USA, 166 pp.

31.
Lessard, E. J. 1991. The trophic role of heterotrophic dinoflagellates in diverse marine environments. Mar. Microb. Food Webs 5:49-58.

32.
Lim, A. S., Jeong, H. J., Jang, T. Y., Yoo, Y. D., Kang, N. S., Yoon, E. Y. & Kim, G. H. 2014. Feeding by the newly described heterotrophic dinoflagellate Stoeckeria changwonensis: a comparison with other species in the family Pfiesteriaceae. Harmful Algae 36:11-21. crossref(new window)

33.
Litaker, R. W., Steidinger, K. A., Mason, P. L., Landsberg, J. H., Shields, J. D., Reece, K. S., Haas, L. W., Vogelbein, W. K., Vandersea, M. W., Kibler, S. R. & Tester, P. A. 2005. The reclassification of Pfiesteria shumwayae (Dinophyceae): Pseudopfiesteria, gen. nov. J. Phycol. 41:643-651. crossref(new window)

34.
Marshall, H. G., Hargraves, P. E., Burkholder, J. M., Parrow, M. W., Elbrächter, M., Allen, E. H., Knowlton, V. M., Rublee, P. A., Hynes, W. L., Egerton, T. A., Remington, D. L., Wyatt, K. B., Lewitus, A. J. & Henrich, V. C. 2006. Taxonomy of Pfiesteria (Dinophyceae). Harmful Algae 5:481-496. crossref(new window)

35.
Mason, P. L., Litaker, R. W., Jeong, H. J., Ha, J. H., Reece, K. S., Stokes, N. A., Park, J. Y., Steidinger, K. A., Vandersea, M. W., Kibler, S., Tester, P. A. & Vogelbein, W. K. 2007. Description of a new genus of Pfiesteria-like dinoflagellate, Luciella gen. nov. (Dinophyceae), including two new species: Luciella masanensis sp. nov. and Luciella atlantis sp. nov. J. Phycol. 43:799-810. crossref(new window)

36.
Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. crossref(new window)

37.
Nakamura, Y., Suzuki, S. -Y. & Hiromi, J. 1995. Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat. Microb. Ecol. 9:157-164. crossref(new window)

38.
Naustvoll, L. -J. 2000. Prey size spectra and food preferences in thecate heterotrophic dinoflagellates. Phycologia 39:187-198. crossref(new window)

39.
Steidinger, K. A., Burkholder, J. M., Glasgow, H. B. Jr., Hobbs, C. W., Garrett, J. K., Truby, E. W., Noga, E. J. & Smith, S. A. 1996. Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae fam. nov.), a new toxic dinoflagellate with a complex life cycle and behavior. J. Phycol. 32:157-164. crossref(new window)

40.
Steidinger, K. A., Landsberg, J. H., Mason, P. L., Vogelbein, W. K., Tester, P. A. & Litaker, R. W. 2006. Cryptoperidiniopsis brodyi gen. et sp. nov. (Dinophyceae), a small lightly armored dinoflagellate in the Pfiesteriaceae. J. Phycol. 42:951-961. crossref(new window)

41.
Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, K. & Kim, J. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158. crossref(new window)

42.
Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101. crossref(new window)

43.
Yoo, Y. D., Yoon, E. Y., Lee, K. H., Kang, N. S. & Jeong, H. J. 2013b. Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta. Algae 28:343-354. crossref(new window)