Advanced SearchSearch Tips
Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : ALGAE
  • Volume 31, Issue 1,  2016, pp.49-59
  • Publisher : The Korean Society of Phycology
  • DOI : 10.4490/algae.2016.31.3.9
 Title & Authors
Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)
Kang, Eun Ju; Kim, Kwang Young;
  PDF(new window)
Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.
acidification;CO2;greenhouse;photosynthesis;temperature;Ulva pertusa;warming;
 Cited by
Andria, J. R., Vergara, J. J. & Perez-Llorens, J. 1999. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur. J. Phycol. 34:497-504. crossref(new window)

Atkin, O. K., Edwards, E. J. & Loveys, B. R. 2000. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 147:141-154. crossref(new window)

Atkin, O. K. & Tjoelker, M. G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351. crossref(new window)

Björk, M., Haglund, K., Ramazanov, Z. & Pedersén, M. 1993. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29:166-173. crossref(new window)

Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P. & Suggett, D. J. 2011. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56:927-938. crossref(new window)

Cheng, W., Sims, D. A., Luo, Y., Coleman, J. S. & Johnson, D. W. 2000. Photosynthesis, respiration and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio. Glob. Chang. Biol. 6:931-941. crossref(new window)

Choi, T. S. 2003. Ecophysiological characteristics of green macroalga Ulva pertusa L. from eelgrass habitats. Ph.D. dissertation, Chonnam National University, Gwangju, Korea, pp. 89-118.

Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277:1409-1415. crossref(new window)

Dale, B., Edwards, M. & Reid, P. C. 2006. Climate change and harmful algal blooms. In Granéli, E. & Turner, J. T. (Eds.) Ecology of Harmful Algae. Springer, Berlin, pp. 367-378.

Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2-8. crossref(new window)

Davison, I. R., Greene, R. M. & Podolak, E. J. 1991. Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar. Biol. 110:449-454. crossref(new window)

de Casabianca, M. -L., Barthelemy, N., Serrano, O. & Sfriso, A. 2002. Growth rate of Ulva rigida in different Mediterranean eutrophicated sites. Bioresour. Technol. 82:27-31. crossref(new window)

Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169-192. crossref(new window)

Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. -P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. -D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A. & Riebesell, U. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 50:493-507. crossref(new window)

Falkowski, P. G. & Raven, J. A. 2007. Aquatic photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, pp. 306-310.

Figueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. -J., Ang, P. Jr., Inken, S., Marquardt, R. & Korbee, N. 2009. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chorophyta): responses to short-term stress. Aquat. Biol. 7:173-183. crossref(new window)

Floreto, E. A. T., Hirata, H., Ando, S. & Yamasaki, S. 1993. Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 36:149-158.

Fu, F. -X., Warner, M. E., Zhan, Y., Feng, Y. & Hutchins, D. A. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J. Phycol. 43:485-496. crossref(new window)

Gao, K., Helbling, E. W., Hӓder, D. -P. & Hutchins, D. A. 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol. Prog. Ser. 470:167-189. crossref(new window)

García-Sánchez, M. J., Fernández, J. A. & Niell, X. 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55-61.

Gessner, F. 1970. Temperature: plants. In Kinne, O. (Ed.) Marine Ecology: A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. Vol. 1. Environmental Factors. Wiley Interscience, New York, pp. 363-406.

Giannotti, A. L. & McGlathery, K. J. 2001. Consumption of Ulva lactuca (Chlorophyta) by the omnivorous mud snail Ilyanassa obsoleta (Say). J. Phycol. 37:209-215. crossref(new window)

Gordillo, F. J. L., Figueroa, F. L. & Niell, F. X. 2003. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315-322. crossref(new window)

Gordillo, F. J. L., Niell, F. X. & Figueroa, F. L. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64-70. crossref(new window)

Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A. & Tausnev, N. 2005. Earth’s energy imbalance: confirmation and implications. Science 308:1431-1435. crossref(new window)

Innes, D. J. 1988. Genetic differentiation in the intertidal zone in populations of the alga Enteromorpha linza (Ulvales: Chlorophyta). Mar. Biol. 97:9-16. crossref(new window)

Inskeep, W. P. & Bloom, P. R. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485. crossref(new window)

IPCC 2007. Summary for policymakers. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1-18.

Israel, A. & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Chang. Biol. 8:831-840. crossref(new window)

Johnston, A. M., Maberly, S. C. & Raven, J. A. 1992. The acquisition of inorganic carbon for four red macroalgae. Oecologia 92:317-326. crossref(new window)

Kang, E. J., Kim, J. -H., Kim, K., Choi, H. -G. & Kim, K. Y. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277. crossref(new window)

Kang, E. J., Kim, J. -H., Kim, K. & Kim, K. Y. 2016. Adaptations of a green tide forming Ulva linza (Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea. Phycologia 55:210-218. crossref(new window)

Kim, J. -H., Kang, E. J., Park, M. G., Lee, B. -G. & Kim, K. Y. 2011. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. J. Appl. Phycol. 23:421-432. crossref(new window)

Kim, J. -H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. -M., Park, K. -T., Shin, K., Hyun, B. & Jeong, H. J. 2013. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525-7535. crossref(new window)

Kim, J. -M., Shin, K., Lee, K. & Park, B. -K. 2008. In situ ecosystem-based carbon dioxide perturbation experiments: design and performance evaluation of a mesocosm facility. Limnol. Oceanogr. Methods 6:208-217. crossref(new window)

Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492. crossref(new window)

Kim, K. Y. & Lee, I. K. 1996. The germling growth of Enteromorpha intestinalis (Chlorophyta) in laboratory culture under different combinations of irradiance and salinity and temperature and salinity. Phycologia 35:327-331. crossref(new window)

Koch, M., Bowes, G., Ross, C. & Zhang, X. -H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Chang. Biol. 19:103-132. crossref(new window)

Kübler, J. E. & Davison, I. R. 1995. Thermal acclimation of light-use characteristics of Chondrus crispus (Rhodophyta). Eur. J. Phycol. 30:189-195. crossref(new window)

Lewis, E. & Wallace, D. W. R. 1998. CO2SYS-Program developed for the CO2 system calculations. Report ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, 21 pp.

Lüning, K. 1990. Seaweeds: their environment, biogeography and ecophysiology. Wiley, New York, 544 pp.

Menzel, D. W. & Corwin, N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280-282. crossref(new window)

Mercado, J. M., Figueroa, F. L., Niell, F. X. & Axelsson, L. 1997. A new method for estimating external carbonic anhydrase activity in macroalgae. J. Phycol. 33:999-1006. crossref(new window)

Murase, N., Maegawa, M., Matsui, T., Ohgai, M., Katayama, N., Saitoh, M. & Yokohama, Y. 1993. Growth and photosynthesis termperature characteristics of the sterile Ulva pertusa. Nippon Suisan Gakkaish 60:625-630.

Olabarria, C., Arenas, F., Viejo, R. M., Gestoso, I., Vaz-Pinto, F., Incera, M., Rubal, M., Cacabelos, E., Veiga, P. & Sobrino, C. 2013. Response of macroalgal assemblages from rock-pools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065-1079. crossref(new window)

Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblage of marine phytoplankton. J. Mar. Res. 38:687-701.

Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237. crossref(new window)

Raven, J. A. 1997. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27:85-209. crossref(new window)

Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J. -P. & Hall-Spencer, J. M. 2011. Coral and mollusk resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 1:308-312. crossref(new window)

Schaum, E., Rost, B., Millar, A. J. & Collins, S. 2013. Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat. Clim. Chang. 3:298-302.

Taylor, R., Fletcher, R. L. & Raven, J. A. 2001. Preliminary studies on the growth of selected ‘green-tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot. Mar. 44:327-336.

Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D. & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118. crossref(new window)

Vona, V., Rigano, V. D. M., Lobosco, O., Carfagna, S., Esposito, S. & Rigano, C. 2004. Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol. 163:325-331. crossref(new window)

Webber, A. N., Nie, G. -Y. & Long, S. P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth. Res. 39:413-425. crossref(new window)

Wood, T. M. & Bhat, K. M. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160:87-112. crossref(new window)

Xu, J. & Gao, K. 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160:1762-1769. crossref(new window)

Young, A. J., Collins, J. C. & Russell, G. 1987. Ecotypic variation in the osmotic responses of Enteromorpha intestinalis (L.) Link. J. Exp. Bot. 38:1309-1324. crossref(new window)

Zimmerman, R. C., Kohr, D. G., Steller, D. L. & Alberte, R. S. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol. 115:599-607.

Zou, D. & Gao, K. 2013. Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 49:61-68. crossref(new window)

Zou, D. & Gao, K. 2014. The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86-94. crossref(new window)

Zou, D., Gao, K. & Luo, H. 2011. Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J. Phycol. 47:87-97. crossref(new window)