Advanced SearchSearch Tips
Cellular growth and fatty acid content of Arctic chlamydomonadalean
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : ALGAE
  • Volume 31, Issue 1,  2016, pp.61-72
  • Publisher : The Korean Society of Phycology
  • DOI : 10.4490/algae.2016.31.2.8
 Title & Authors
Cellular growth and fatty acid content of Arctic chlamydomonadalean
Jung, Woongsic; Kim, Eun Jae; Lim, Suyoun; Sim, Hyunji; Han, Se Jong; Kim, Sanghee; Kang, Sung-Ho; Choi, Han-Gu;
  PDF(new window)
Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.
Arctic;chlamydomonadalean;fatty acid methyl ester;microalgae;psychrophilic;
 Cited by
Abomohra, A. E. -F., Wagner, M., El-Sheekh, M. & Hanelt, D. 2013. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J. Appl. Phycol. 25:931-936. crossref(new window)

Ahn, J. -W., Hwangbo, K., Lee, S. Y., Choi, H. -G., Park, Y. -I., Liu, J. R. & Jeong, W. -J. 2012. A new Arctic Chlorella species for biodiesel production. Bioresour. Technol. 125:340-343. crossref(new window)

Buchheim, M. A., Buchheim, J. A. & Chapman, R. L. 1997. Phylogeny of the VLE-14 Chlamydomonas (Chlorophyceae) group: a study of 18S rRNA gene sequences. J. Phycol. 33:1024-1030. crossref(new window)

Buchheim, M. A., Lemieux, C., Otis, C., Gutell, R. R., Chapman, R. L. & Turmel, M. 1996. Phylogeny of the Chlamydomonadales (Chlorophyceae) a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol. Phylogenet. Evol. 5:391-402. crossref(new window)

Buchheim, M. A., Turmel, M., Zimmer, E. A. & Chapman, R. L. 1990. Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S rRNA sequence data. J. Phycol. 26:689-699. crossref(new window)

Chaffin, J. D., Mishra, S., Kuhaneck, R. M., Heckathorn, S. A. & Bridgeman, T. B. 2012. Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: a candidate for biofuel production. J. Appl. Phycol. 24:1045-1051. crossref(new window)

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. crossref(new window)

Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5:301-309. crossref(new window)

Eddie, B., Krembs, C. & Neuer, S. 2008. Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar. Ecol. Prog. Ser. 354:107-117. crossref(new window)

Ettl, H. 1976. Die Gattung Chlamydomonas Ehrenberg. Nova Hedwig. Beih. 49:1-1122.

Fedorov, A. S., Kosourov, S., Ghirardi, M. L. & Seibert, M. 2005. Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfatelimited chemostat system. Appl. Biochem. Biotechnol. 121-124:403-412.

Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. crossref(new window)

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. crossref(new window)

Huang, G. H., Chen, F., Wei, D., Zhang, X. W. & Chen, G. 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87:38-46. crossref(new window)

Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. crossref(new window)

Kapdan, I. K. & Kargi, F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38:569-582. crossref(new window)

Liang, K., Zhang, Q., Gu, M. & Cong, W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 25:311-318. crossref(new window)

Mahapatra, D. M., Chanakya, H. N. & Ramachandra, T. V. 2013. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J. Appl. Phycol. 25:855-865. crossref(new window)

Margesin, R., Schinner, F., Marx, J. C. & Gerday, C. 2008. Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, 462 pp.

Martínez, M. E., Sánchez, S., Jiménez, J. M., El Yousfi, F. & Muñoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73:263-272. crossref(new window)

Mata, T. M., Martins, A. A. & Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:217-232. crossref(new window)

Nakada, T., Misawa, K. & Nozaki, H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48:281-291. crossref(new window)

Nakada, T. & Nozaki, H. 2009. Taxonomic study of two new genera of fusiform green flagellates Tabris gen. nov. and Hamakko gen. nov. (Volvocales, Chlorophyceae). J. Phycol. 45:482-492. crossref(new window)

Nigam, S., Rai, M. P. & Sharma, R. 2011. Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol. 7:124-129. crossref(new window)

Nozaki, H., Misumi, O. & Kuroiwa, T. 2003. Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol. Phylogenet. Evol. 29:58-66. crossref(new window)

Pandey, A., Lee, D. -J., Chisti, Y. & Soccol, C. R. 2014. Biofuels from algae. Elsevier, San Diego, CA, 348 pp.

Park, K. C., Whitney, C., McNichol, J. C., Dickinson, K. E., MacQuarrie, S., Skrupski, B. P., Zou, J., Wilson, K. E., O’Leary, S. J. B. & McGinn, P. J. 2012. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J. Appl. Phycol. 24:339-348. crossref(new window)

Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. crossref(new window)

Ruiz-Marin, A., Mendoza-Espinosa, L. G. & Stephenson, T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101:58-64. crossref(new window)

Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Microbial Identification Inc., Newark, De, 5 pp.

Saunders, G. W. & Kraft, G. T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta): I. evidence for the Plocamiales ord. nov. Can. J. Bot. 72:1250-1263. crossref(new window)

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1:20-43. crossref(new window)

Seaburg, K. G., Parked, B. C., Wharton, R. A. Jr. & Simmons, G. M. Jr. 1981. Temperature-growth responses of algal isolates from Antarctic oases. J. Phycol. 17:353-360. crossref(new window)

Singh, S., Kate, B. N. & Banerjee, U. C. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25:73-95. crossref(new window)

Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W. & Gillevet, P. M. 1994. The genetic data environment an expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10:671-675.

Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. crossref(new window)

Stamatakis, A. 2014. RAxMLversion 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. crossref(new window)

Tang, E. P. Y., Tremblay, R. & Vincent, W. F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33:171-181. crossref(new window)

Teoh, M. -L., Chu, W. -L., Marchant, H. & Phang, S. -M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16:421-430. crossref(new window)

Teoh, M. -L., Phang, S. -M. & Chu, W. -L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol. 25:285-297. crossref(new window)

Vello, V., Phang, S. -M., Chu, W. -L., Majid, N. A., Lim, P. -E. & Loh, S. -K. 2014. Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J. Appl. Phycol. 26:1399-1413. crossref(new window)

Walker, T. L., Purton, S., Becker, D. K. & Collet, C. 2005. Microalgae as bioreactor. Plant Cell Rep. 24:629-641. crossref(new window)

Wang, B. & Lan, C. Q. 2011. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 102:5639-5644. crossref(new window)

Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. & Ruan, R. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162:1174-1186. crossref(new window)

Yumoto, I. 2013. Cold-adapted microorganisms. Caister Academic Press, Norfolk, 226 pp.

Zhang, E., Wang, B., Wang, Q., Zhang, S. & Zhao, B. 2008. Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour. Technol. 99:3787-3793. crossref(new window)