JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fermented Saccharina japonica (Phaeophyta) improves neuritogenic activity and TMT-induced cognitive deficits in rats
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : ALGAE
  • Volume 31, Issue 1,  2016, pp.73-84
  • Publisher : The Korean Society of Phycology
  • DOI : 10.4490/algae.2016.31.11.10
 Title & Authors
Fermented Saccharina japonica (Phaeophyta) improves neuritogenic activity and TMT-induced cognitive deficits in rats
Park, Hyun-Jung; Lee, Mi-Sook; Shim, Hyun Soo; Lee, Gyeong-Ran; Chung, Sun Yong; Kang, Young Mi; Lee, Bae-Jin; Seo, Yong Bae; Kim, Kyung Soo; Shim, Insop;
  PDF(new window)
 Abstract
Marine organisms are frequently used to be harmful and have lower side effects than synthetic drugs. The cognitive improving efficacy of gamma aminobutyric acid-enriched fermented Saccharina japonica (FSJ) on the memory deficient rats, which were induced by trimethyltin chloride (TMT), was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), cAMP response element binding protein (CREB), and brain derived neurotrophic factor (BDNF) immunohistochemistry. The neurite outgrowth of Neuro2a cells was assessed in order to examine the underlying mechanisms of the memory enhancing effects of FSJ. Treatment with FSJ tended to shorten the latency to find the platform in the acquisition test of the Morris water maze at the second and fourth day compared to the control group. In the probe trial, the FSJ treated group increased time spent in the target quadrant, compared to that of the control group. Consistent with the behavioral data, these treatments recovered the loss of ChAT, CREB, and BDNF immunepositive neurons in the hippocampus produced by TMT. Treatment with FSJ markedly stimulated neurite outgrowth of the Neuro2a cells as compared to that of the controls. These findings demonstrate that FSJ may be useful for improving the cognitive function via regulation of neurotrophic marker enzyme activity.
 Keywords
brain derived neurotrophic factor;cAMP response element binding protein;gamma aminobutyric acid;Morris water maze;Saccharina japonica;trimethyltin;
 Language
English
 Cited by
1.
Effects of γ-aminobutyric acid-enriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women, ALGAE, 2016, 31, 2, 175  crossref(new windwow)
 References
1.
Alessandri, B., FitzGerald, R. E., Schaeppi, U., Krinke, G. J. & Classen, W. 1994. The use of an unbaited tunnel maze in neurotoxicology: I. Trimethyltin-induced brain lesions. Neurotoxicology 15:349-357.

2.
Balaban, C. D., O’Callaghan, J. P. & Billingsley, M. L. 1988. Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 26:337-361. crossref(new window)

3.
Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. & Silva, A. J. 1994. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59-68. crossref(new window)

4.
Brown, A. W., Aldridge, W. N., Street, B. W. & Verschoyle, R. D. 1979. The behavioral and neuropathologic sequelae of intoxication by trimethyltin compounds in the rat. Am. J. Pathol. 97:59-82.

5.
Chang, L. W. & Dyer, R. S. 1983a. A time-course study of trimethyltin induced neuropathology in rats. Neurobehav. Toxicol. Teratol. 5:443-459.

6.
Chang, L. W. & Dyer, R. S. 1983b. Trimethyltin induced pathology in sensory neurons. Neurobehav. Toxicol. Teratol. 5:673-696.

7.
Chang, L. W. & Dyer, R. S. 1985. Septotemporal gradients of trimethyltin-induced hippocampal lesions. Neurobehav. Toxicol. Teratol. 7:43-49.

8.
Chang, L. W., Tiemeyer, T. M., Wenger, G. R. & McMillan, D. E. 1983a. Neuropathology of trimethyltin intoxication. III. Changes in the brain stem neurons. Environ. Res. 30:399-411. crossref(new window)

9.
Chang, L. W., Wenger, G. R., McMillan, D. E. & Dyer, R. S. 1983b. Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats. Neurobehav. Toxicol. Teratol. 5:337-350.

10.
Choi, S. -I., Lee, J. -W., Park, S. -M., Lee, M. -Y., Ji, G. -E., Park, M. -S. & Heo, T. -R. 2006. Improvement of γ-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 16:562-568.

11.
Cotman, C. W. & Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25:295-301. crossref(new window)

12.
Earley, B., Burke, M. & Leonard, B. E. 1992. Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem. Int. 21:351-366. crossref(new window)

13.
Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H. & Christie, B. R. 2004. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71-79. crossref(new window)

14.
Fortemps, E., Amand, G., Bomboir, A., Lauwerys, R. & Laterre, E. C. 1978. Trimethyltin poisoning: report of two cases. Int. Arch. Occup. Environ. Health 41:1-6. crossref(new window)

15.
Gao, W., Lin, T., Li, T., Yu, M., Hu, X. & Duan, D. 2013. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Int. J. Clin. Exp. Med. 6:259-268.

16.
Geloso, M. C., Corvino, V. & Michetti, F. 2011. Trimethyltininduced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem. Int. 58:729-738. crossref(new window)

17.
Gooney, M., Shaw, K., Kelly, A., O’Mara, S. M. & Lynch, M. A. 2002. Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: evidence for a role for brain-derived neurotrophic factor. Behav. Neurosci. 116:455-463. crossref(new window)

18.
Gunasekar, P. G., Mickova, V., Kotyzova, D., Li, L., Borowitz, J. L., Eybl, V. & Isom, G. E. 2001. Role of astrocytes in trimethyltin neurotoxicity. J. Biochem. Mol. Toxicol. 15:256-262. crossref(new window)

19.
Guo, F. C., Kwakkel, R. P., Williams, B. A., Parmentier, H. K., Li, W. K., Yang, Z. Q. & Verstegen, M. W. 2004. Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens. Poult. Sci. 83:1124-1132. crossref(new window)

20.
Hagan, J. J., Jansen, J. H. & Broekkamp, C. L. 1988. Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats. Neurotoxicology 9:53-74.

21.
Harikrishnan, R., Kim, M. -C., Kim, J. -S., Han, Y. -J., Jang, I.-S., Balasundaram, C. & Heo, M. S. 2011. Immunomodulatory effect of sodium alginate enriched diet in kelp grouper Epinephelus brneus against Streptococcus iniae. Fish Shellfish Immunol. 30:543-549. crossref(new window)

22.
Heldt, S. A., Stanek, L., Chhatwal, J. P. & Ressler, K. J. 2007. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatr. 12:656-670. crossref(new window)

23.
Ishida, N., Akaike, M., Tsutsumi, S., Kanai, H., Masui, A., Sadamatsu, M., Kuroda, Y., Watanabe, Y., McEwen, B. S. & Kato, N. 1997. Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 81:1183-1191. crossref(new window)

24.
Jackson, T. & Ramaswami, M. 2003. Prospects of memorymodifying drugs that target the CREB pathway. Curr. Opin. Drug Discov. Devel. 6:712-719.

25.
Jenkins, S. M. & Barone, S. Jr. 2004. The neurotoxicant trimethyltin induces apoptosis via caspase activation, p38 protein kinase, and oxidative stress in PC12 cells. Toxicol. Lett. 147:63-72. crossref(new window)

26.
Jones, J. I. & Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16:3-34.

27.
Kang, Y. M., Lee, B. -J., Kim, J. I., Nam, B. -H., Cha, J. -Y., Kim, Y. -M., Ahn, C. -B., Choi, J. -S., Choi, I. S. & Je, J. -Y. 2012. Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of γ-GT: a randomized, double-blind, and placebo-controlled clinical study. Food Chem. Toxicol. 50:1166-1169. crossref(new window)

28.
Kaur, S., Chhabra, R. & Nehru, B. 2013. Ginkgo biloba extract attenuates hippocampal neuronal loss and cognitive dysfunction resulting from trimethyltin in mice. Phytomedicine 20:178-186. crossref(new window)

29.
Kim, J. Y., Lee, M. Y., Ji, G. E., Lee, Y. S. & Hwang, K. T. 2009. Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130:12-16. crossref(new window)

30.
Koczyk, D. 1996. How does trimethyltin affect the brain: facts and hypotheses. Acta Neurobiol. Exp. (Wars.) 56:587-596.

31.
Koczyk, D., Skup, M., Zaremba, M. & Oderfeld-Nowak, B. 1996. Trimethyltin-induced plastic neuronal changes in rat hippocampus are accompanied by astrocytic trophic activity. Acta Neurobiol. Exp. (Wars.) 56:237-241.

32.
Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schütz, G. & Silva, A. J. 1997. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7:1-11.

33.
Kook, M. -C., Seo, M. -J., Cheigh, C. -I., Pyun, Y. -R., Cho, S. -C. & Park, H. 2010. Enhanced production of γ-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20:763-766.

34.
Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H. & Bonhoeffer, T. 1995. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. U. S. A. 92:8856-8860. crossref(new window)

35.
Kuda, T., Nakamura, S., An, C., Takahashi, H., Kimura, B. & Nishizawa, M. 2012. Effects of holdfast of Laminaria japonica on Listeria invasion on enterocyte-like Caco-2 cells and NO production of macrophage RAW 264.7 cells. Appl. Biochem. Biotechnol. 168:928-935. crossref(new window)

36.
Küpper, F. C., Carpenter, L. J., Leblanc, C., Toyama, C., Uchida, Y., Maskrey, B. H., Robinson, J., Verhaeghe, E. F., Malin, G., Luther, G. W. 3rd, Kroneck, P. M. H., Kloareg, B., Meyer-Klaucke, W., Muramatsu, Y., Megson, I. L., Potin, P. & Feiters, M. C. 2013. In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J. Exp. Bot. 64:2653-2664. crossref(new window)

37.
Lee, B. -J., Senevirathne, M., Kim, J. -S., Kim, Y. -M., Lee, M. -S., Jeong, M. -H., Kang, Y. M., Kim, J. I., Nam, B. -H., Ahn, C. -B. & Je, J. -Y. 2010a. Protective effect of fermented sea tangle against ethanol and carbon tetrachlorideinduced hepatic damage in Sprague-Dawley rats. Food Chem. Toxicol. 48:1123-1128. crossref(new window)

38.
Lee, B., Sur, B. -J., Han, J. -J., Shim, I., Her, S., Lee, H. -J. & Hahm, D. -H. 2010b. Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 34:1085-1093. crossref(new window)

39.
Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H. & Barde, Y. -A. 1989. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149-152. crossref(new window)

40.
Lipsky, R. H. & Marini, A. M. 2007. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann. N. Y. Acad. Sci. 1122:130-143. crossref(new window)

41.
Liu, P. & Zhao, X. 2013. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Biotechnol. J. 8:847-854. crossref(new window)

42.
Lonze, B. E. & Ginty, D. D. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605-623. crossref(new window)

43.
Lu, Y., Christian, K. & Lu, B. 2008. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobio. Learn. Mem. 89:312-323. crossref(new window)

44.
Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., Kern, H., Kretz, O., Villalba, A. M., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., Otto, C., Schmid, W. & Schütz, G. 2002. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31:47-54. crossref(new window)

45.
Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. 2000. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20:7116-7121.

46.
Mundy, W. R. & Freudenrich, T. M. 2006. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases. Neurotoxicology 27:71-81. crossref(new window)

47.
Park, H. -J., Lee, S. Y., Shim, H. S., Kim, J. S., Kim, K. S. & Shim, I. 2012a. Chronic treatment with squid phosphatidylserine activates glucose uptake and ameliorates TMT-induced cognitive deficit in rats via activation of cholinergic systems. Evid. Based Complement. Alternat. Med. 2012:601018.

48.
Park, H. -J., Shim, H. S., Ahn, Y. H., Kim, K. S., Park, K. J., Choi, W. K., Ha, H. -C., Kang, J. I., Kim, T. S., Yeo, I. H., Kim, J. S. & Shim, I. 2012b. Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trimethyltininduced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav. Brain Res. 229:82-90. crossref(new window)

49.
Park, H. -J., Shim, H. S., Choi, W. K., Kim, K. S. & Shim, I. 2011. Neuroprotective effect of Lucium chinense fruit on trimethyltin-induced learning and memory deficits in the rats. Exp. Neurobiol. 20:137-143. crossref(new window)

50.
Paxinos, G., Watson, C., Pennisi, M. & Topple, A. 1985. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13:139-143. crossref(new window)

51.
Sala, C., Rudolph-Correia, S. & Sheng, M. 2000. Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20:3529-3536.

52.
Swartzwelder, H. S., Hepler, J., Holahan, W., King, S. E., Leverenz, H. A., Miller, P. A. & Myers, R. D. 1982. Imparied maze performance in the rat caused by trimethyltin treatment: problem-solving deficits and perseveration. Neurobehav. Toxicol. Teratol. 4:169-176.

53.
Thoenen, H. 1995. Neurotrophins and neuronal plasticity. Science 270:593-598. crossref(new window)

54.
Ueno, H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 10:67-79. crossref(new window)

55.
Walsh, T. J., Miller, D. B. & Dyer, R. S. 1982. Trimethyltin, a selective limbic system neurotoxicant, impairs radialarm maze performance. Neurobehav. Toxicol. Teratol. 4:177-183.

56.
Watanabe, M., Fuda, H., Jin, S., Sakurai, T., Hui, S. -P., Takeda, S., Watanabe, T., Koike, T. & Chiba, H. 2012. A phenolic antioxidant from the Pacific oyster (Crassostrea gigas) inhibits oxidation of cultured human hepatocytes mediated by diphenyl-1-pyrenylphosphine. Food Chem. 134:2086-2089. crossref(new window)

57.
Woodruff, M. L., Baisden, R. H., Cannon, R. L., Kalbfleisch, J. & Freeman, J. N. 3rd. 1994. Effects of trimethyltin on acquisition and reversal of a light-dark discrimination by rats. Physiol. Behav. 55:1055-1061. crossref(new window)

58.
Yokoyama, S., Hiramatsu, J. & Hayakawa, K. 2002. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J. Biosci. Bioeng. 93:95-97. crossref(new window)

59.
Zhao, T. F., Xu, C. X., Li, Z. W., Xie, F., Zhao, Y. T., Wang, S. Q., Luo, C. H., Lu, R. S., Ni, G. L., Ku, Z. Q., Ni, Y. F., Qian, Q. & Chen, X. Q. 1982. Effect of Tremella fuciformis Berk on acute radiation sickness in dogs (author’s transl). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 4:20-23.