JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors
Patil, U.M.; Nam, Min Sik; Shinde, N.M.; Jun, Seong Chan;
  PDF(new window)
 Abstract
A facile soft chemical synthesis route is used to grow nano-buds of copper hydroxide [] thin films on stainless steel substrate[SS]. Besides different chemical methods for synthesis of nanostructure, the chemical bath deposition (CBD) is attractive for its simplicity and environment friendly condition. The structural, morphological, and electro-chemical properties of thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement techniques. The results showed that, facile chemical synthesis route allows to form the polycrystalline, granular nano-buds of thin films. The electrochemical properties of thin films are studied in an aqueous 1 M KOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with specific capacitance. Moreover, electrochemical capacitive measurements of electrode exhibit a high specific energy and power density about and , respectively, at current density. The superior electrochemical properties of copper hydroxide () electrode with nano-buds like structure mutually improves pseudocapacitive performance. This work evokes scalable chemical synthesis with the enhanced supercapacitive performance of electrode in energy storage devices.
 Keywords
;Chemical Bath Deposition;Granular Nano-buds;Supercapacitor,;
 Language
English
 Cited by
 References
1.
C.C. Hu, J.C. Chen, K.H. Chang, J. Power Sources, 221, (2013), 128-133. crossref(new window)

2.
H. Zhang, Y. Wang, C. Liu, H. Jiang, J. Alloys Comp., 517, (2012), 1-8. crossref(new window)

3.
C.D. Lokhande, A.M. More, J.L. Gunjakar, J. Alloys Comp., 486, (2009), 570-580. crossref(new window)

4.
N. Li, M. Cao and C. Hu, Nanoscale, 4, (2012), 6205-6218. crossref(new window)

5.
V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo, Mater. Chem. Phys., 114, (2009), 6-9. crossref(new window)

6.
D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, C.D. Lokhande, J. Alloys Comp., 492, (2010), 26-30. crossref(new window)

7.
J.S. Shaikh, R.C. Pawar, N.L. Tarwal, D.S. Patil, P.S. Patil, J. Alloys Comp., 509, (2011), 7168-7174. crossref(new window)

8.
D. Kim, K.Y. Rhee, S.J. Park, J. Alloys Comp., 530, (2012), 6-10. crossref(new window)

9.
S. Kandalkar, J. Gunjakar and C. Lokhande, Appl. Surf. Sci., 254, (2008), 5540-5544. crossref(new window)

10.
I.L. Zhang, Z. Xiong, X.S. Zhao, J. Power Sources, 222, (2013), 326-332. crossref(new window)

11.
P. Gao, M. Zhang, Z. Niu, Q. Xiao, Chem. Commun., 48, (2007), 5197-5199.

12.
L. Zhu, Y. Chen, Y. Zheng, N. Li, J. Zhao, Y. Sun, Mater. Lett., 64, (2010), 976-979. crossref(new window)

13.
K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, J. Alloys Comp., 509, (2011), 27-31. crossref(new window)

14.
X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, Mater. Lett., 72, (2012), 49-52. crossref(new window)

15.
X. Guan, L. Li, G. Li, Z. Fu, J. Zheng, T. Yan, J. Alloys Comp., 509, (2011), 3367-3374. crossref(new window)

16.
G. Hodes, Phys. Chem. Chem. Phys., 9, (2007), 2181-2196. crossref(new window)

17.
C. Zhu, A. Oshero and Matthew J. Panzer, Electrochimica Acta, 111, (2013), 771-778. crossref(new window)

18.
F. Wang, W. Tao, M. Zhao, M. Xu, S. Yang, Z. Sun, L. Wang, J. Alloys Comp., 509, (2011), 9783-9803.

19.
S. B. Kulkarni, U. M. Patil, I. Shackery, J. S. Sohn, S. Lee, B. Park and S. Jun, J. Mater. Chem. A, 2, (2014), 4989-4998. crossref(new window)

20.
U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources, 188, (2009), 338-342. crossref(new window)

21.
U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, J. Alloys Comp., 509, (2011), 1677-1682. crossref(new window)

22.
A. Bruke, J. Power Sources, 91, (2000), 37-50. crossref(new window)

23.
U.M. Patil, Su Chan Lee, J.S. Sohn, S.B. Kulkarni, K.V. Gurav, J.H. Kim, Jae Hun Kim, Seok Lee, Seong Chan Jun, Electrochimica Acta, 129, (2014), 334-342. crossref(new window)

24.
U. M. Patil, M. S. Nam, J. S. Sohn, S. B. Kulkarni, R. Shin, S. Kang, S. Lee, J. H. Kim and S. Chan Jun, J. Mater. Chem. A, 2, (2014), 19075-19083. crossref(new window)

25.
J. Chen, J. Xu, S. Zhou, N. Zhao and C.-P. Wong, J. Mater. Chem. A, 3, (2015), 17385-17391. crossref(new window)

26.
A. Pramanik, S. Maiti and S. Mahanty, Dalton Trans., 44, (2015), 14604-14612. crossref(new window)

27.
S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Journal of Electroanalytical Chemistry, 732, (2014), 80-85. crossref(new window)

28.
C.-C. Hu, W.-C. Chen, Electrochimica Acta, 49, (2004), 3469-3477. crossref(new window)

29.
V. Ganesh, S. Pitchumani, V. Lakshminarayanan, Journal of Power Sources, 158, (2006), 1523-1532. crossref(new window)