JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter
Choi, Byeong Kwon; Byun, Jong Hyun; Seo, Jun Gyu; Lee, Hak Kyu; Jeon, Min Yong;
  PDF(new window)
 Abstract
We report the characteristics of a single-wavelength-tunable fiber laser using a polymer waveguide Bragg grating (PWBG) wavelength filter. The output of the laser depends on environmental conditions, such as temperature and polarization states in the laser cavity. Wavelength tuning can be achieved, about 16.29 nm from 1548.24 nm to 1531.95 nm, according to the electric power applied to the PWBG wavelength filter. The achieved efficiency slope is about -0.16 nm/mW. A side-mode suppression ratio (SMSR) of more than 35 dB can be obtained by adjusting the polarization state in the laser cavity. A stable wavelength-tunable fiber laser can be achieved using the PWBG wavelength filter with a TEC module and a polarization-maintaining fiber.
 Keywords
Wavelength tunable laser;Polymeric optical waveguide;Wavelength filter;Fiber laser;
 Language
Korean
 Cited by
 References
1.
N. Bamiedakis, J. Beals IV, R. V. Penty, I. H. White, J. V. DeGroot, Jr., and T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects", IEEE J. Quant. Electron. 45, 415 (2009). crossref(new window)

2.
J.-W. Kim, N.-S. Son, J.-H. Jang, K.-J. Kim, and M.-C. Oh, "Ultra-low inter-channel crosstalk in array waveguide device incorporating self-assembled microsphere diffraction layer," Opt. Express 19, 20904-20909 (2011). crossref(new window)

3.
H. Uno and T. Ishigure, "GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk," Opt. Express 19, 10931-10939 (2011). crossref(new window)

4.
S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Polymer waveguide birefringence modulators," IEEE Photon. Technol. Lett. 24, 845-847 (2012).

5.
J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, "Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators," Opt. Express 20, 12443-12448 (2012). crossref(new window)

6.
J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices," Opt. Express 22, 23801-23806 (2014). crossref(new window)

7.
J.-S. Shin, T.-H. Park, W.-S. Chu, C.-H. Lee, S.-Y. Shin, and M.-C. Oh, "Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction," Opt. Express 23, 17223-17228 (2015). crossref(new window)

8.
K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997). crossref(new window)

9.
Ahmad, H.; Saat, N.K.; Harun, S.W. S-band erbium-doped fiber ring laser using a fiber Bragg grating. Laser. Phys. Lett. 2005, 2, 369-371. crossref(new window)

10.
S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, "Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings," Opt. Express 16, 11830-11835 (2008). crossref(new window)

11.
M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, "Widely tunable dual-wavelength $Er^{3+}$-doped fiber laser for tunable continuous-wave terahertz radiation," Opt. Express 18, 12291-12297 (2010). crossref(new window)

12.
Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-s. Kim, S. H. Oh, and M.-C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express 16, 18194-18201 (2008). crossref(new window)

13.
N.-S. Son, K.-J. Kim, J.-W. Kim, and M.-C. Oh, "Nearinfrared tunable lasers with polymer waveguide Bragg gratings," Opt. Express 20, 827-834 (2012). crossref(new window)

14.
J.-W. Kim, K.-J. Kim, N.-S. Son, and M.-C. Oh, "Strainimposed External Cavity Tunable Lasers Operating for NIR Wavelength," J. Opt. Soc. Korea 17, 172-176 (2013). crossref(new window)

15.
B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, "A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings," Laser Phys. Lett. 10, 125105 (2013). crossref(new window)

16.
C.-H. Sung, J.-W. Kim, J.-S. Shin, and M.-C. Oh, "Two-Wavelength Lasers Based on Oversized Rib Polymer Waveguide Bragg Reflectors," Korean Journal of Optics and Photonics, Vol. 25, p. 38 (2014). crossref(new window)

17.
K.-J. Kim, J.-K. Seo, and M.-C. Oh, "Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector," Opt. Express 16, 1423-1430 (2008). crossref(new window)

18.
K.-J. Kim and M.-C. Oh, "Flexible Bragg reflection waveguide devices fabricated by post-lift-off process," IEEE Photon. Technol. Lett. 20, 288-290 (2008). crossref(new window)

19.
S. H. Oh, K.-H. Yoon, K. S. Kim, J. Kim, O.-K. Kwon, D. K. Oh, Y.-O. Noh, J. K. Seo, and H.-J. Lee, "Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector," IEEE J. Sel. Top. Quantum. Electron. 17, 1534-1541 (2011). crossref(new window)