JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper)
Kwon, Youngchul; Park, Kyoungyoon; Lee, Dongyeul; Chang, Hanbyul; Lee, Seungjong; Vazquez-Zuniga, Luis Alonso; Lee, Yong Soo; Kim, Dong Hwan; Kim, Hyun Tae; Jeong, Yoonchan;
  PDF(new window)
 Abstract
Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.
 Keywords
Fiber;Optical amplifier;Laser;Stimulated Brilloin scattering;Beam combination;
 Language
Korean
 Cited by
 References
1.
V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. Park, and J.-M. P. Delavaux, "Stable single-mode Erbium fiber-grating laser for digital communication," IEEE J. Lightwave Technol. 11, 2021-2025 (1993). crossref(new window)

2.
L. G. Luo, P. L. Chu, and H. F. Liu, "1-GHz optical communication system using chaos in Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 12, 269-271 (2000). crossref(new window)

3.
Q. Peng, A. Juzeniene, J. Chen, L. O Svaasand, T. Warloe, K.-E. Giercksky, and J. Moan, "Lasers in medicine," Rep. Prog. Phys. 71, 1-28 (2008).

4.
N. M. Fried and K. E. Murray, "High-power Thulium fiber laser ablation of urinary tissues at 1.94 ${\mu}m$," J. Endourol. 19, 25-31 (2005). crossref(new window)

5.
S. Son, H. Park, and K. H. Lee, "Automated laser scanning system for reverse engineering and inspection," Int. J. Mach. Tools Manuf. 42, 889-897 (2002). crossref(new window)

6.
T. Pfister, L. Buttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006). crossref(new window)

7.
M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). crossref(new window)

8.
A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics-a review" J. Eur. Ceram. Soc. 29, 969-993 (2009). crossref(new window)

9.
D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). crossref(new window)

10.
J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). crossref(new window)

11.
C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013). crossref(new window)

12.
R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). crossref(new window)

13.
M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Sel. Top. Quantum Electron. 15, 191-206 (2009). crossref(new window)

14.
Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). crossref(new window)

15.
Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-471 (2004). crossref(new window)

16.
Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode Ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009). crossref(new window)

17.
Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency Ytterbium-doped fiber master-oscillaotr power-amplifier sources up to 500 W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007). crossref(new window)

18.
E. Stiles, "New developments in IPG fiber laser technology," in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

19.
Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Opt. Fiber Technol. 20, 575-592 (2014). crossref(new window)

20.
L. A. Vazquez-Zuniga and Y. Jeong, "Power-scalable, subnanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Kor. 17, 177-181 (2013). crossref(new window)

21.
L. A. Vazquez-Zuniga and Y. Jeong, "Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror," J. Opt. Soc. Kor. 17, 117-129 (2013). crossref(new window)

22.
L. A. Vazquez-Zuniga, H. Kim, Y. Kwon, and Y. Jeong, "Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber," Opt. Express 21, 7712-7725 (2013). crossref(new window)

23.
S. Lee, L. A. Vazquez-Zuniga, D. Lee, H. Kim, J. K. Sahu, and Y. Jeong, "Comparative experimental analysis of thermal characteristics of ytterbium-doped phosphosilicate and aluminosilicate fibers," J. Opt. Soc. Kor. 17, 182-187 (2013). crossref(new window)

24.
T. Yao, J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped Aluminosilicate fibers," IEEE J. Lightwave Technol. 32, 429-434 (2014). crossref(new window)

25.
J. Limpert, F. Roser, T. Schreiber, and A, Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). crossref(new window)

26.
J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). crossref(new window)

27.
K. Park and Y. Jeong, "A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers," Opt. Express 22, 7932-7946 (2014). crossref(new window)

28.
A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). crossref(new window)

29.
A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007). crossref(new window)

30.
L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, "170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Express 21, 5456-5462 (2013). crossref(new window)

31.
N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11, 1518-1522 (1993). crossref(new window)

32.
Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," IEEE J. Lightwave Technol. 22, 631-639 (2004). crossref(new window)

33.
P. D. Dragic, "Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers," Electron. Lett. 48, 1492-1493 (2012). crossref(new window)

34.
L. Dong, "Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs," IEEE J. Lightwave Technol. 28, 3156-3161 (2010).

35.
D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tunnermann, "Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers," Opt. Lett. 35, 2982-2984 (2010). crossref(new window)

36.
J. Kim, P. Dupriez, C. Codemard, J.Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). crossref(new window)

37.
X. Ma, I.-N. Hu, and A. Galvanauskas, "Propagation-length independent SRS threshold in chirally-coupled-core fibers," Opt. Express 19, 22575-22581 (2011). crossref(new window)

38.
R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by selffocusing," Opt. Lett. 31, 3423-3425 (2006). crossref(new window)

39.
G. Fibich and A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett. 25, 335-337 (2000). crossref(new window)

40.
A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). crossref(new window)

41.
C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "The impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). crossref(new window)

42.
C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Physical origin of mode instabilities in high-power fiber laser systems," Opt. Express 20, 12912-12925 (2012). crossref(new window)

43.
M. Karow, H. Tunnermann, J. Neumann, D. Kracht, and P. Wessels, "Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power," Opt. Lett. 37, 4242-4244 (2012). crossref(new window)

44.
T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). crossref(new window)

45.
A. V. Smith and J. J. Smith, "Increasing mode instability thresholds of fiber amplifers by gain saturation," Opt. Express 21, 15168-15182 (2013). crossref(new window)

46.
C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser systems," Opt. Express 21, 19375-19386 (2013). crossref(new window)

47.
S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigation of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). crossref(new window)

48.
K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Thermally induced mode coupling in rare-earth doped fiber amplifiers" Opt. Lett. 37, 2382-2384 (2012). crossref(new window)

49.
T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). crossref(new window)

50.
S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007). crossref(new window)

51.
W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, "Coherent beam combining with multilevel optical phase-locked loops," J. Opt. Soc. Am. B 24, 2930-2939 (2007). crossref(new window)

52.
S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, C.-C. Shih, D. M. Shimabukuro, M. P. Wacks, M. E. Weber, and G. D. Goodno, "Scalable coherent combining of kilowatt fiber amplifers into a 2.4-kW beam," IEEE J. Sel. Top. Quantum Electron. 20, 0901008 (2014).

53.
T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beamcombined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron. 13, 487-497 (2007). crossref(new window)

54.
C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118-3120 (2011). crossref(new window)

55.
C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). crossref(new window)

56.
D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, "Ultimate efficiency of spectral beam combining by volume Bragg gratings," Appl. Opt. 52, 7233-7242 (2013). crossref(new window)

57.
A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008). crossref(new window)

58.
G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, USA, 2007).

59.
V. Khitrov, K. Farley, R. Leveille, J. Galipeau, I. Majid, S. Christensen, B. Samson, and K. Tankala, "kW level narrow linewidth Yb fiber amplifiers for beam combining" Proc. SPIE 7686, 76860A-1-76860A-8 (2010).

60.
S. Hadrich, T. Schreiber, T. Pertsch, J. Limpert, T, Peschel, R. Eberhardt, and A. Tunnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006). crossref(new window)

61.
D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Kilowattclass single-frequency fiber sources," Proc. SPIE 5709, 133-141 (2005).

62.
http://www.laserfocusworld.com/articles/2015/03/lockheedmartin-s-30-kw-fiber-laser-weapon-disables-truck-from-a-mile-away.html

63.
http://www.qphotonics.com/Fiber-Coupled-Single-Mode-Laser-Diodes/

64.
J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optical parametric amplifiers," Opt. Express 18, 18138-18150 (2010). crossref(new window)

65.
A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo- random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). crossref(new window)

66.
A. V. Harish and J. Nilsson, "Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering," Opt. Express 23, 6988-6999 (2015). crossref(new window)

67.
http://www.nufern.com/pam/optical_fibers/933/PLMA-YDF-25_400-VIII/

68.
P. P. Lu, A. L. Bullington, P. Beyersdorf, S. Traeger, and J. Mansell, R. Beausoleil, E. K. Gustafson, R. L. Byer, and M. M. Fejer, "Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam," J. Opt. Soc. Am. A 24, 659-668 (2007). crossref(new window)

69.
B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). crossref(new window)

70.
O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tunnermann, "Spectral beam combination of fiber amplified ns-pulses by means of interference filters," Opt. Express 17, 22974-22982 (2009). crossref(new window)

71.
M. Fabert, A. D.-Berthelemot, V. Kermene, and A. Crunteanu, "Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirros," Opt. Express 20, 22895-22901 (2012). crossref(new window)