JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Salicylic Acid and Water Stress Effects on Growth and Proline of Cucumber Seedlings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Salicylic Acid and Water Stress Effects on Growth and Proline of Cucumber Seedlings
Lee, Gui-Soon; Kim, Tae-Yun; Hong, Jung-Hee;
  PDF(new window)
 Abstract
The effects of salicylic acid(SA) and water deficit on growth and proline accumulation were investigated in cucumber(Cucurmis sativus L.) seedlings. Exogenous application of SA(100 M-1 mM) led to a noticeable decrease in root and shoot growth, and dry weight of seedlings. Anatomical observation on leaf of cucumber revealed that the thickness of all leaf tissue components decreased in SA-treated plants. The effect was most pronounced on the width of the adaxial epidermis. In the separate effects of SA(0, 100, 500 and 1000 M) and water deficit induced by PEG(0, 4.4, 7.0 and 9.6 %) on growth, the water deficit treatments had greater effects on growth traits than SA. Combinations of SA and PEG(SA+PEG) decreased shoot and root dry matter, and root length. Proline increased slightly in SA-treated seedlings, but exhibited a marked increase in water deficit application. Combinations of SA+PEG induced higher proline in both shoots and roots than SA stress alone. Shoots had higher proline than roots. Our data support a role of SA potentiating the osmotic stress response of germinating cucumber seedling.
 Keywords
salicylic acid;water deficit;proline;adaxial epidermis;dry matter;root length;Cucurmis sativus;
 Language
English
 Cited by
1.
카드뮴에 의해 유도된 담배 식물의 생장, 엽록소와 rubisco/rubisco activase에 대한 salicylic acid의 전환 효과,왕옥산;노광수;

생명과학회지, 2012. vol.22. 6, pp.778-787 crossref(new window)
 References
1.
Ann. Bot., 1990. vol.66. pp.369-373

2.
Trends in Microbiol., 1993. vol.1. pp.88-92 crossref(new window)

3.
Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992. vol.43. pp.439-463 crossref(new window)

4.
Weed Sci., 1983. vol.31. pp.293-298

5.
J. Exp. Bot., 1998. vol.49. pp.239-247 crossref(new window)

6.
Z. Pflanzenphysiol., 1979. vol.93. pp.371-375 crossref(new window)

7.
Plant Physiol., 1981. vol.68. pp.1349-1353 crossref(new window)

8.
Plant Cell Rep., 1986. vol.5. pp.144-146 crossref(new window)

9.
Physiol. Plant., 1976. vol.38. pp.53-56 crossref(new window)

10.
Plant Cell Physiol., 1980. vol.21. pp.923-927

11.
Panta, 1989. vol.180. pp.82-89

12.
Proc. Natl. Acad. Sci. USA, 1991. vol.88. pp.2122-2126 crossref(new window)

13.
Plant Physiol., 1998. vol.152. pp.381-386 crossref(new window)

14.
Compt. Rend. Acad. Bulg. Sci., 1998. vol.51. pp.101-104

15.
Photosysnthetica, 1998. vol.35. pp.255-258 crossref(new window)

16.
Planta, 1994. vol.193. pp.372-376

17.
Plant J., 1999. vol.17. pp.603-614 crossref(new window)

18.
Planta, 1999. vol.208. pp.175-180 crossref(new window)

19.
Plant Physol, 1998. vol.116. pp.1351-1357 crossref(new window)

20.
Trends Plant Sci., 1997. vol.7. pp.266-274

21.
Plant Cell, 1999. vol.11. pp.273-287 crossref(new window)

22.
J. Plant Physiol., 1996. vol.149. pp.57-63 crossref(new window)

23.
Photosynthetica, 1996. vol.32. pp.635-639

24.
Plant Cell, 1995. vol.7. pp.1099-1111 crossref(new window)

25.
Plant Growth Regul, 1997. vol.21. pp.79-102 crossref(new window)

26.
Plant Physiol., 1995. vol.108. pp.1387-1394

27.
Calif. Agric. Exp. Bot., 1950. vol.37. pp.1036-1043

28.
Plant Soil, 1973. vol.39. pp.205-207 crossref(new window)

29.
Photo-synthetica, 2000. vol.38. pp.243-250

30.
J. Exp. Bot., 1986. vol.37. pp.129-134 crossref(new window)

31.
Compt. Rend. Acad. Bulg. Sci., 1991. vol.44. pp.89-92

32.
J. Plant Physiol., 1988. vol.132. pp.257-261 crossref(new window)

33.
J. Plant Physiol., 1997. vol.150. pp.338-344 crossref(new window)

34.
Plant Physiol., 1999. vol.119. pp.1349-1360 crossref(new window)

35.
Plant Physiol., 2001. vol.126. pp.1024-1030 crossref(new window)