JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons
Yim, Soo-Bin;
  PDF(new window)
 Abstract
The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K and K of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The Kand K values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, AgAr++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.
 Keywords
Silver(I);Polycyclic Aromatic Hydrocarbons;Complexation;Cation- Interaction;Co-contaminant Mixtures;
 Language
English
 Cited by
1.
토양광물 표면의 흡착으로 인한 수용액상의 Silver 제거특성,임수빈;

수처리기술, 2009. vol.17. 4, pp.19-27
 References
1.
U.S. DOE Report No DOE/ER-05471, 1992. pp.77

2.
J. Am. Chem. Soc., 1949. vol.71. pp.3644-3647 crossref(new window)

3.
J. Am. Chem. Soc., 1954. vol.76. pp.3931-3935 crossref(new window)

4.
Environ. Sci. Tech., 1980. vol.14. pp.1524-1531 crossref(new window)

5.
Practical handbook of estuarine and marine pollution, 1997. pp.524

6.
Environ. Toxicol. Chem., 1997. vol.16. pp.2190-2199 crossref(new window)

7.
Environ. Sci. Tech., 1979. vol.13. pp.416-423 crossref(new window)

8.
Hazardous Waste Management, 2001. pp.1202

9.
Environ. Toxicol. Chem., 1999. vol.18. pp.23-29 crossref(new window)

10.
Environ. Toxicol. Chem., 1999. vol.18. pp.3-8 crossref(new window)

11.
Science, 1990. vol.250. pp.1558-1560 crossref(new window)

12.
Science, 1993. vol.261. pp.1708-1710 crossref(new window)

13.
Intermolecular and surface forces, 1991. pp.405

14.
J. Am. Chem. Soc., 1974. vol.96. pp.743-749 crossref(new window)

15.
J. Am. Chem. Soc., 1974. vol.96. pp.5407-5413 crossref(new window)

16.
Inorg. Chem., 1997. vol.36. pp.4903-4905 crossref(new window)

17.
J. Am. Chem. Soc., 1998. vol.120. pp.8610-8618 crossref(new window)

18.
Rapid Commun. Mass Sp., 1988. vol.12. pp.1679-1684 crossref(new window)

19.
Environmental organic chemistry, 1993. pp.681

20.
Principles of fluorescence spectroscopy, 1999. pp.698

21.
Environ. Sci. Tech., 1985. vol.19. pp.522-529 crossref(new window)

22.
Fuel, 1962. vol.8. pp.37-54

23.
J. Chem. Eng. Data, 1979. vol.24. pp.127-129 crossref(new window)