JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Radiative Role of Clouds on the Earth Surface Energy Balance
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Radiative Role of Clouds on the Earth Surface Energy Balance
Hong, Sung-Chul; Chung, Ii-Ung; Kim, Hyung-Jin; Lee, Jae-Bum; Oh, Sung-Nam;
  PDF(new window)
 Abstract
In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations () came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of . It is found that cooling effect to the surface temperature due to radiative role of clouds is about . From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF .
 Keywords
Slab ocean model;CGCM;Clouds radiative forcing;Radiative role of clouds;Feedback;
 Language
Korean
 Cited by
 References
1.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad E., Hartmann, D., 1989, Cloud- radiative forcing and climate: Result from the Earth Radiation Budget Experiment, Sci., 243, 57-63 crossref(new window)

2.
Cess, R.D., Zhang, M. H., Ingram, W. J., Potter, G. L., Alekseev, V., Barker, H. W., Cohen-Solal, E., Colman, R. A., Dazlich, D. A., Del Genio, A. D., Dix, M. R., Dyrnnilov, V., Esch, M., Fowler, L. D., Fraser, J. R., Galin, V., Gates, W. L. Hack, J. J., Kiehl, J. T., Treunt, H. Le., Lo, K. K. -W., McAvaney, B. J., Meleshko, V. P., Morcrette, J. - J., Randall, D. A., Roeckner, E., Royer, J.-F., Schlesinger, M. E., Sporyshev, P. V., Timbal, B., Volodin, E. M., Taylor, K. E., Wang, W., Wetherald, R. T., 1996, Cloud feedback in atmospheric general circulation model: An update, J. Geophys. Res., 101, 12791-12794 crossref(new window)

3.
Manabe, S., Strickler, R. F., 1964, Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos. Sci., 21, 361-385 crossref(new window)

4.
Harrison, E. F., Minnis, P., Barkstrorn, B. R., Ramanathan, V., Cess, R. D., Gibson, G. G., 1990, Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, J. Grophys. Res.,95, 18687-18703 crossref(new window)

5.
Cess, R.D., Zhang, M. H., Minnis, P., Corsetti, L., Dutton, E. G., Forgan, B. W., Garber, D. P., Gates, W. L., Hack, J. J., Harrison, E. F., Jing, X., Kiehl, J. T., Long, C. N., Morcrette, J.-J., Potter, G. L., Ramanathan, V., Subasilar, B., Whitlock, C. H., Young, D. F., Zhou, Y., 1995, Absorption of solar radiation by clouds: observations versus models, Sci., 267, 496-499 crossref(new window)

6.
Collins, W. D., Valero, F. P. J., Flatau, P. J., Lubin, D., Grassl, H., Pilewskie, P., 1996, Radiative effects of convection in the tropical Pacific, J. Geophys. Res., 101, 14999-15012 crossref(new window)

7.
Wilson, M. F., 1984, The construction and use of land surface information in a general circulation climate model, Ph.D. Thesis, University of Liverpool, United Kingdom

8.
Chou, M. D., Zhao, W., Chou, S. H., 1998, Radiation budgets and cloud radiative forcing in the pacific warm pool during TOGA COARE, J. Geophys. Res., 103, 16967-16977 crossref(new window)

9.
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., 1989, Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation model, Sci., 245, 513-516 crossref(new window)

10.
Kiehl, J. T., Trenberth, K. E., 1997, Earth's annual mean energy budget, Bull. Amer. Meteor. Soc., 78, 97-208

11.
정일웅, 1999, 대순환 모형에서 일어나는 운동 에너지의 소산과 마찰 가열, 박사학위논문, 대기과학과, 연세대학, 서울

12.
Hansen, J., Lacis, A., Rand, D., Russel, G., Stone, P., Fung, I., Ruedi R., Lerner, J., 1983, Climate sensitivity: Analysis of feedback mechanisms in climate processes and climate sensi tivity, Geophys. Mono., 29, 130-163

13.
유수현, 이은정, 전종갑, 류상범, 2001, 지구온난화에 따른 여름철 열대-동아시아 기후변동 상호작용 연구, 한국기상학회 초록집, 11(3), 397-400

14.
Maloney, E. D., Kiehl, J. T., 2002, Intraseasonal eastern Pacific precipitation and SST variations in a GCM coupled to a slab ocean model, J. Climate, 15, 2989-3007 crossref(new window)

15.
Levitus, S., 1982, Climatological Atlas of the World Ocean, NOAA Professional Paper 13