JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Simple Simulation of Parabola-Shaped Clouds in the Lee of a Low Bell-Shaped Mountain Using the ARPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Simple Simulation of Parabola-Shaped Clouds in the Lee of a Low Bell-Shaped Mountain Using the ARPS
Lee, Seung-Jae; Lee, Hwa-Woon; Kang, Sung-Dae;
  PDF(new window)
 Abstract
A three-dimensional linear model and the Advanced Regional Prediction System (ARPS) were used to simulate parabola-shaped disturbances and clouds in the lee of a bell-shaped mountain. The ARPS model was compared in the x-y plane against the linear model's analytic solution. Under similar conditions with the linear theory, the ARPS produced well-developed parabola-shaped mountain disturbances and confirmed the features are accounted for in the linear regime. A parabola-shaped cloud in the lee of an isolated bell-shaped mountain was successfully simulated in the ARPS after 6 hours of integration time with the prescribed initial and boundary conditions, as well as a microphysical scheme.
 Keywords
Mountain wave;Linear model;Fast Fourier Transform;ARPS;Lee clouds;Froude number;
 Language
English
 Cited by
 References
1.
Atkinson B. W., 1981, Meso-scale Atmosphere. Academic Press, London, 495pp

2.
Crapper G. D., 1959, A three-dimensional solution for waves in the lee of mountains, J. Fluid Mech., 6, 51-76 crossref(new window)

3.
Doyle J. D., Durran D. R., 2002, The dynamics of mountain-wave-induced rotors, J. Atmos. Sci., 59, 186-201 crossref(new window)

4.
Durran D. R., Klemp J. B., 1983, A compressible model for the simulation of moist mountain waves, Mon. Wea. Rev., 111 2341-2361 crossref(new window)

5.
Hu Q., Reiter E. R., Pielke R. A., 1980, Analytic solutions to Long's model: A comparison of nonhydrostatic and hydrostatic cases, Meteorol. Atmos. Phys., 39, 184-196 crossref(new window)

6.
Johnson K. W., Bauer J., Riccardi G. A., Droegemeier K. K., Xue M., 1994, Distributed processing of a regional prediction model, 122, 2558-2572 crossref(new window)

7.
Kang S. D., 1997, A numerical study on the mesoscale disturbance in the lee of an isolated mountain, Ph.D. dissertation, Dept. of Geoscience, University of Tsukuba, 113pp

8.
Kang S. D., and Kimura F., 1997, A numerical study on the mechanism of cloud-street formation in the lee of an isolated mountain near a coast, J. Meteor. Soc. Japan, 75, 955-968

9.
Kikuchi T., Arakawa S., Kimura F., Shirasaki K., Nagano T., 1981, Numerical study on the effects of mountains on the land and sea breeze circulation in the Kanto district, J. Meteor. Soc. Japan, 59, 723-737

10.
Klemp J. B., Wilhelmson R. B., 1978, The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070-1096 crossref(new window)

11.
Lee S. J., Lee H. W., 2006, A three-dimensional linear mountain wave model and its application to complex terrain, J. Korean Meteor. Soc., 42, 1-10

12.
Lilly D. K., 1978, A severe downslope windstorm and aircraft turbulence event induced by a mountain wave, J. Atmos. Sci., 35, 59-77 crossref(new window)

13.
Lilly D. K., Klemp J. B., 1980, Comments on the evolution and stability of finite-amplitude mountain wave. Part II: Surface wave drag and severe downslope windstorms, J. Atmos. Sci., 37, 2119-2121 crossref(new window)

14.
Long R. R., 1953, Some aspects of the flow of stratified fluids. I. A theoretical investigation, Tellus, 20, 386-390

15.
Lyra G., 1943, Theorie der stationaren leewellen stromung in freier atmosphare, Z. Ang. Math. Mech., 23, 1-28 crossref(new window)

16.
Neiman P. J., Shaw J. A., 2003, Coronas and iridescence in mountain wave clouds over north-eastern Colorado, Bull. Amer. Met. Soc., 84, 1373-1386 crossref(new window)

17.
Phillips D. S., 1984, Analytical surface pres suer and drag for linear hydrostatic flow over three-dimensional elliptical mountains, J. Atmos. Sci., 41, 1073-1084 crossref(new window)

18.
Peltier W. R., Clark T. L., 1979, The evolution and stability of finite-amplitude mountain waves. Part II. Surface wave drag and severe downslope windstorms, J. Atmos. Sci., 36, 1498-1529 crossref(new window)

19.
Pielke R. A., Cotton W. R., Walko R. L., Tremback C. J., Nicholls M. E., Moran M. D., Wesley D. A., Lee T. J., Copeland J. H., 1992, A comprehensive meteorological modeling system-RAMS, Meteor. Atmos. Phys., 49, 69-91 crossref(new window)

20.
Pinty J., Benoit R., Richard E., Laprise R., 1995, Simple tests of a semi-implicit semi-lagrangian model on 2D mountain wave problems, Mon. Wea. Rev., 123, 3042-3058 crossref(new window)

21.
Queney P., 1947, Theory of perturbations in stratified currents with application to air flow over mountain barrier, University of Chicago, Department of Meteorology, Miscellaneous Report no. 23

22.
Queney P., 1948, The problem of air flow over mountains: a summary of theoretical studies, Bull. Amer. Met. Soc., 29, 16-26

23.
Smith R. B., 1980, Linear theory of stratified hydrostatic flow past an isolated mountain, Tellus, 32, 348-364 crossref(new window)

24.
Wang T. A., Lin Y. L., 1999a, Wave ducting in a stratified shear flow over a two-dimensional mountain. Part I: General linear criteria, J. Atmos. Sci., 56, 412-436 crossref(new window)

25.
Wang T. A., Lin Y. L., 1999b, Wave ducting in a stratified shear flow over a two-dimensional mountain. Part II: Implications for the development of high-drag states for severe downslope windstorms, J. Atmos. Sci., 56, 437-452 crossref(new window)

26.
Wurtele M., 1957, The three-dimensional lee wave, Beitr. Phys. Frei. Atmos., 29, 242-252

27.
Xue M., Droegemeier K. K., Wong V., Shapiro A., Brewster K., 1995, Advanced Regional Prediction System (ARPS) Version 4.0 Users's Guide, Center for Analysis and Prediction of Storms, 320pp