Advanced SearchSearch Tips
Characterization of Chl a Fluorescence of Hydrophytes under Cadmium Stress
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Chl a Fluorescence of Hydrophytes under Cadmium Stress
Oh, Soon-Ja; Zhin, Kook-Lhim; Koh, Seok-Chan;
  PDF(new window)
The effects of ions on the Chl a fluorescence of 5 hydrophytes (e.g. Lemna, Salvinia, Ricciocarp, Nymph, Typha plants) were investigated in order to select -sensitive plant species and to get informations on physiological responses of plants to stress. Lemna plants were most sensitive to cadmium stress, while Nymph plants were tolerant. However, in all -treated plants, Fv/Fm, the maximum photochemical efficiency of PS II, decreased in proportion to the increase of concentration and treatment time. The Chl a fluorescence transient O-J-I-P was also considerably affected by ions; the fluorescence yield decreased consid- erably in steps J, I and P in treated plants, although it followed a typical polyphasic rise in non-treated plants. In Lemna plants, the functional parameters, ABS/CS, TRo/CS와 ETo/CS and RC/CS, decreased in proportion to the increase of concentration, while N, Mo and Kn increased. The structural parameters, , /(), Plabs, SFlabs, Kp and RC/ABS, also decreased according to the increase of concentration. Consequently, Lemna plants will be useful as a experimental model system to investigate responses of plants. And several functional or structural parameters could be applied to determine quantitatively the physiological states of plants under stresses.
Chl a fluorescence;Hydrophytes;Cadmium stress;Fv/Fm;Lemna plants;
 Cited by
담수산 클로렐라(Chlorella vulgaris)의 수은 스트레스에 대한 엽록소형광 반응,오순자;고석찬;

Journal of Environmental Science International, 2013. vol.22. 6, pp.705-715 crossref(new window)
카드뮴 독성 평가를 위한 은행이끼의 엽록소형광 분석 및 환경지표 선발,오순자;고석찬;

Journal of Environmental Science International, 2013. vol.22. 11, pp.1403-1413 crossref(new window)
광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응,이경철;왕명현;송재모;

시설원예ㆍ식물공장, 2013. vol.22. 2, pp.154-161 crossref(new window)
수분스트레스가 땃두릅나무의 광합성 능력 및 광계 II의 활성에 미치는 영향,이경철;김선희;박완근;김영설;

한국약용작물학회지, 2014. vol.22. 1, pp.38-45 crossref(new window)
Effects of Soil Water Potential and Nitrogen Fertilization on Characteristics of Photosynthesis and Chlorophyll Fluorescence Induction in Schisandra chinensis Baillon,;;;;;;;;

한국토양비료학회지, 2015. vol.48. 6, pp.705-711 crossref(new window)
온도에 따른 단삼의 광합성 특성 및 수확시기가 품질에 미치는 영향,서영진;김종수;김선화;김미연;정용진;성기운;정신교;

한국식품저장유통학회지, 2015. vol.22. 6, pp.804-810 crossref(new window)
Chl a Fluorescence Characterization and Biomarker Selection from Ricciocarpos natans under Cadmium Stress, Journal of Environmental Science International, 2013, 22, 11, 1403  crossref(new windwow)
Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris, Journal of Environmental Science International, 2013, 22, 6, 705  crossref(new windwow)
Nriagu J. O. and J. M. Pacyna, 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134-139 crossref(new window)

Maleva M. G., G. F. Nekrasova and V. S. Bezel, 2004, The response of hydrophytes to environmental pollution with heavy Metals, Russian J. Ecol., 35(4), 230-235 crossref(new window)

Benavides M. P., S. M. Gallego and M. L. Tomaro, 2005, Cadmium toxicity in plants, Braz. J. Plant Physiol., 17(1), 21-34 crossref(new window)

John R., P. Ahmad, K. Gadgil and S. Sharma, 2009, Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L., Int. J. Plant Production, 3(3), 65-76

Kahle H., 1993, Response of roots of trees to heavy metals, Environ. Exp. Bot., 33(1), 99-119 crossref(new window)

Prasad M. N. V., 1995, Cadmium toxity and tolerance in vascular plants, Environ. Exp. Bot., 35(4), 525-545 crossref(new window)

Vogeli-Lange R. and G. J. Wagner, 1990, Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, Plant Physiol., 92(4), 1086-1093 crossref(new window)

Baryla A., P. Carrier, F. Franck, C. Coulomb, C. Sahut and M. Havaux, 2001, Leaf chlorosis in oilseed repe plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696-709 crossref(new window)

Sandalio L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. del Rio, 2001, Cadmium induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 52, 2115-2126

Baker N. R., 1991, A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis, Physiol. Plant., 81, 563-570 crossref(new window)

Lang M., H. K. Lichtenthaler, M. Sowinska, F. Heisel and J. A. Miehé, 1996, Fluorescence imaging of water and temperature stress in plant leaves, J. Plant Physiol., 148, 613-621 crossref(new window)

Gilmore A. M. and Govindjee, 1999, How higher plants respond to excess light: Energy dissipation in photosystem II, In: Singhal G. S., Renger G., Irrgang K. D., Govindjee (ed.), Concepts in photobiology: Photosynthesis and Photo-morphogenesis, New Delhi, India, 513-548

Osmond C. B., D. Kramer and U. Luttge, 1999, Reversible, water stress induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses, Plant Biol., 1, 618-624 crossref(new window)

오순자, 고석찬, 2004, 겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구, 한국환경생물학회지, 22(1), 233-241

Guidi L., S. Mori, E. Degl´Innocenti and S. Pecchia, 2007, Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence, Plant Physiol. Biochem., 45, 851-857 crossref(new window)

Chollet R., 1993, Screening inhibitors (antimetabolites) of the biosynthesis or function of amino acids or vitamins with Lemna assay, In Boger P., Sandmann G. (ed.), Target assay of modern herbicides and related phytotoxicity compounds, Lewis, London, UK, 143-149

Nedbal L., J. Soukupova, J. Whitmarsh and M. Trtilek, 2000, Posthavest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38(4), 571-579 crossref(new window)

Strasser B. J. and R. J. Strasser, 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test. In Mathis P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980

Srivastava A., B. Guisse, H. Greppin and R. J. Strasser, 1997, Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochem. Biophys. Acta., 1320, 95-106 crossref(new window)

Nilsson H. E., 1995, Remote sensing and image analysis in plant pathology, Ann. Rev. Phytopathol., 33, 489-527 crossref(new window)

Peuelas J. and I. Filella, 1998, Visible and near-infrared reflectance techniques for diagnosing plant physiological status, Trends Plant Sci., 3, 151-156 crossref(new window)

Lichtenthaler H. K. and J. A. Mieh, 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316-320 crossref(new window)

Krause G. H. and E. Weiss, 1991, Chlorophyll fluorescence and photosynthesis: The basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349 crossref(new window)

Bolhar-Nordenkampf H. R., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber and E. G. Lechner, 1989, Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation, Functional Ecol., 3(4), 497-514 crossref(new window)

Strasser R. J. and Govindjee, 1992, The Fo and the O-J-I-P fluorescence rise in higher plants and algae, In Argyroudi-Akoyunoglou J. H. (ed.), Regulation of Chloroplast Biogenesis, Plenum Press, New York, 423-426

Stirbet A., Govindjee, B. J. Strasser and R. J. Strasser, 1998, Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation, J. Theor. Biol., 193, 131-151 crossref(new window)