JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Turbidity Treatment of TiO2 Wastewater by Electrocoagulation/flotation Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Turbidity Treatment of TiO2 Wastewater by Electrocoagulation/flotation Process
Park, Young-Seek;
  PDF(new window)
 Abstract
The separation of wastewater carried out by an electrocoagulation/flotation process, which had various operating parameters. The effect of electrode material (aluminum and four dimensionally stable electrode), applied current (0.07~0.5 A), electrolyte concentration (0~1 g/L), solution pH (3~11), initial turbidity (1000~20000 NTU) and suspended solid concentration (5000~25000 mg/L) were evaluated. Turbidity removal efficiency of the soluble anode (aluminum), which could produce metal ions, was higher than that of the dimensionally stable electrode. Considering operation time, turbidity removal and electric power, optimum current was 0.19 A. The more NaCl dosage was high, the less electric power was required. However, optimum NaCl concentration was 0.125 g/L considered removal efficiency, operation time and cost. Initial concentration did not affected turbidity removal on the electrocoagulation/flotation operation. The electrocoagulation/flotation process was proved to be a very effective separation method in the removal of from wastewater.
 Keywords
Electrocoagulation/flotation;Aluminum electrode;;Turbidity;Current;
 Language
Korean
 Cited by
 References
1.
Golikova E. V., O. M. Rogoza, D. M. Shelkunov and Y. A. Chernoberezhskii, 1995, Electrosurface properties and aggregation stability of aqueous dispersion of $TiO_2$ and $ZrO_2$, Colloid J., 57(1), 25-29.

2.
김달중, 이광형, 권아영, 한무영, 2000, $TiO_2$의 응집 특성에 관한 연구, 대한상하수도학회.한국물환경학회 공동추계학술발표회논문집, 277-280.

3.
Mathur S., P. Singh and B. M. Moudgil, 2000, Advanced in selective flocculation technology for solid-solid separations, Int. J. Miner. Process, 58, 201-222. crossref(new window)

4.
박영식, 김동석, 2007, 전해부상 공정을 이용한 $TiO_2$ 폐수의 처리, 대구가톨릭대학교자연과학논문집, 5(1), 93-98.

5.
김달중, 이광형, 권아영, 한무영, 2001, 전해부상에서의 $TiO_2$ 폐수처리에 대한 최적운전조건, 상하수도학회지, 15(1), 34-39.

6.
Hosny A. Y., 1996, Separating oil from oil-water emulsions by electroflotation technique, Sep. Technol., 6, 9-17. crossref(new window)

7.
윤창곤, 2005, 전해부상을 이용한 하수슬러지 고액 분리의 최적화, 석사학위논문, 환경공학과, 성균관대학교, 서울.

8.
김동석, 박영식, 2007, 전기부상공정에서 촉매성 산화물 전극에 따른 기포 발생량과 크기에 관한 연구, 한국환경과학회지, 16(10), 1189-1195. crossref(new window)

9.
Gao P., X. Chen, F. Shen and G. Chen, 2005, Removal of chromium(VI) from wastewater by combined electrocoagulation-electroflotation without a filter, Sep. Purif. Technol., 43, 117-123. crossref(new window)

10.
최영균, 정태학, 염익태, 2005, 전해부상을 이용한 활성슬러지의 농축효율 향상, 상하수도학회지, 19(3), 295-300.

11.
김동석, 박영식, 2007, 전기부상을 이용한 하수슬러지 농축, 한국환경과학회지, 16(9), 1085-1090. crossref(new window)

12.
APHA. AWWA. WPCF., 1998, Standard methods for the examination of water and wastewater, 20th ed., APHA. AWWA. WPCF., 2-51-2-58.

13.
독고석, 1998, 용존공기부상법(DAF)에서 입자와 미세기포의 충돌특성에 관한 연구, 박사학위논문, 토목공학과, 서울대학교, 서울.

14.
박용효, 한무영, 2002, 전해부상에서 전압과 극판 재질에 따른 미세기포의 크기 특성, 상하수도학회지, 16(6), 663-669.

15.
조강우, 김윤중, 정태학, 2006, 전해부상을 이용한 활성슬러지의 부상 특성에 관한 연구, 한국물환경학회.대한상하수도학회 공동춘계학술발표회 논문집, 173-180.

16.
한무영, 박용효, 이준, 2001, 전해부상에서 미세기포의 크기특성, 대한상하수도학회.한국물환경학회 공동추계학술발표회 논문집, 297-280.

17.
김동석, 박영식, 2007, 불용성 전극을 이용한 Rhodamine B의 전기화학적 탈색, 한국물환경학회지, 23(3), 377-384.

18.
김달중, 이광형, 신민석, 한무영, 2001, 전기부상에 의한 O/W emulsion의 처리, 한국물한경학회.대한상하수도학회 공동춘계학술발표회 논문집, 427-430.

19.
Mikulaasek P., R. J. Wakeman and J. Q. Marchant, 1997, The influences of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions, Chem. Eng. J., 67, 97-102. crossref(new window)

20.
한무영, 신민석, 2002, 회분식 전해부상법(EF)에서 극판 재질이 탁도의 제거효율에 미치는 영향, 상하수도학회지, 16(1), 87-92.

21.
KiliC M. G., C. Hosten and S. Demirci , 2009, A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions, J. of Hazard. Mater., Article in Press.

22.
Hot P. K., G. W. Barton and C. A. Mitchell, 2005, The future for electrocoagulation as localized water treatment technology, Chemosphere, 59, 355-367. crossref(new window)