Advanced SearchSearch Tips
Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan
Kim, Yun-Jong; Kim, Cheol-Hee;
  PDF(new window)
Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and , respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than ) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than . In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.
Aerosols size distribution;Bi-modal distribution;Busan;LPC(Laser Particle Counter);Number concentration of aerosol;
 Cited by
김지아, 2008, 지상 대기질 측정 자료를 이용한 대도시 2차 먼지 생성량 추정, 석사학위논문, 부산대학교.

김지영, 최병철, 2001, 한반도에서 측정된 에어러솔의 크기분포와 지역별 특성, 한국기상학회지, 38, 95-104.

김필수, 김윤장, 이양호, 조숙현, 안승태, 1986, 도시대기 Aerosol의 입자 직경 0.01-1.0 ${\mu}m$ 범위의 농도 변화 특성, 한국대기보전학회지, 2(2), 41-50.

장혜숙, 2000, 습도에 따른 에어로졸의 크기 및 빛의 소산계수 변화에 관한 연구, 석사학위논문, 서울대학교.

전영신, 김지영, 최재천, 신도식, 1999, 황사 시 서울과 안면도의 대기 중 에어로졸 수농도 특성, 한국대기환경학회지, 15(5), 575-586.

정용승, 윤마병, 1996, 1995년 봄에 관측된 황사와 먼지바람 연구, 한국기상학회지, 32, 17-27.

정창훈, 전영신, 최병철, 2003, OPC로 측정한 2001년 서울지역 에어로졸의 입경 분포, 한국대기환경학회지, 19, 515-528.

조희구, 1980, 서울의 대기 aerosol 입자 크기 분포에 관한 연구, 한국기상학회지, 16, 1-9.

IPCC(Intergovermental Panel on Climate Change), 1995, World meteorological office, United Nations.

Park, S. U., Kim, J. W., 2006, Aerosol size distributions observed at the Seoul National University campus in Korea during the Asian dust and Non-Asian dust periods, Atmos. Env., 40, 1722-1730. crossref(new window)

Schwartz, S. E., 1996, The whitehouse effect- shortwave radiative forcing of climate by anthropogenic aerosols: an overview, J. Aerosol Sci., 27, 359-382. crossref(new window)

Seinfeld, J. H., Pandis, S. N., 1998, Atmospheric chemistry and physics- From air pollution to climate change, John Wiley & Sons, Inc, 1326.

Willeke, K., Baron, P. A., 1993, Aerosol Measurement - Principles, Techniques and Applications, Van Nostrand Reinhold, 876.