Advanced SearchSearch Tips
A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase
Lee, Se-Ban; Cui, Ming-Can; Jang, Min; Moon, Deok-Hyun; Cho, Yun-Chul; Khim, Jee-Hyeong;
  PDF(new window)
In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).
Arsenate;Coal mine drainage sludge;Polymer;Adsorption isotherms;Adsorption kinetics;
 Cited by
탄산화법을 이용한 용존 비소 제거에 관한 연구,이현철;민경원;서의영;

한국자원공학회지, 2013. vol.50. 1, pp.70-79
Bhattacharya, A. K., Naiya, T. K., Mandal, S. N., Das, S. K., 2008, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chemical Engineering Journal, 137, 529-541.

Carmen, M. I., Constantin, C., Florin, R., Ion, U., 2008, Characterization of hybrid inorganic/organic polymer-type materials used for arsenic removal from drinking water, Reactive & Functional Polymer, 68, 1578-1586. crossref(new window)

Carmen, M. I., Constantin, C., Florin, R., Ion, U., 2008, Water research, Evaluation of a novel hybrid inorganic/organic polymer type material in the Arsenic removal process from drinking water, 42, 4327-4333. crossref(new window)

Hameed, B. H., Mahmoud, D. K., Ahmad, A. L., 2008, Sorption of basic dye from aqueous solution by pomelo(citrus grandis) peel in a batch system, Colloids and Surfaces A: Physicochm. Eng., 316, 78-84. crossref(new window)

Ibrahim, K., Mehmet, U., Hamdi, K., Celik, A., 2008, Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by $ZnCl_2$ activation, Bioresource Technology, 99, 492-501. crossref(new window)

James, V., Bothe, J. R., Paul, W. B., 1999, Arsenic Immobilization by Calcium Arsenate Formation, Environ. Sci. Technol, 33, 3806-3811. crossref(new window)

Jung, S. H., Lee, J. G., Song, H. S., Kim, N. H., Kwon, J. H., Lee, S. H., 2006, Viscosity index as continuous control of polymer feed in treatment of waterworks sludge, Proceedings of the Korean Society of Water and Wastewater., 113-121.

Lee, T. H., 2010,

Keisuke, F., Tsutomu, S., Nobuyuki, Y., 2003, Solid-Solution Reactions in As(V) Sorption by Schwertmannite, Environ. Sci. Technol., 37, 3581-3586. crossref(new window)

Luis, C., Arup, K. S., 2005, Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles: Role of Donnan Membrane Effect, Environ. Sci. Technol., 39, 6508-6515. crossref(new window)

Maria, P. A., Jordi, C., Maria, M., Javier, G., 2009., Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications., Journal of Hazardous Material 171., 965-972. crossref(new window)

Matthew, J. D., Arup, K. S., John, E. G., 2003, Arsenic removal using a polymeric/inorganic hybrid sorbent, Water Research, 37, 164-176. crossref(new window)

Mingcan, C., Jang, M., Cho, S. H., Khim, J. H., 2010, Kinetic and thermodynamic studies of the adsorption of heavy metals on to a new adsorbent: coal mine drainage sludge, Environmental Technology, 31(11), 1203-1211. crossref(new window)

Oh, C. T., Rhee, S. S., Igarashi, T., Kon, H. J., Lee, W. T., , Park, J. B., 2010, Sorption Characteristics of Arsenic on Furnace Slag by Adsorption Isotherm and Kinetic Sorption Experments, Proceedings of the Korean Geotechnical Society, 26(9), 37-45.

Sharma, I., Goyal, D., 2010, Adsorption kinetics : Bioremoval of trivalent chromium from tannery efflunet by aspergillus sp. biomass, Research Journal of Environmental Science, 4(1), 1-2. crossref(new window)

Shahwan, T, Erten, H. N, 2002, Thermodynamic parameters of $Cs^+$ sorption natural clays, J. Radio-analytical Nuclear Chem., 253(1), 115-120. crossref(new window)

Sarioglu, M., Atay, U. A, Cebeci, Y, 2005, Removal of copper from aqueous solution by phosphate rock, Desalination 181, 303-311. crossref(new window)

Vayuusina, O. M., Soldayov, V. S., Sokolova, V. I., Johann, J., Bissen, M., Weissenbacher, A, 2007, A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water, Reactive & Functional Polymers 67, 184-201. crossref(new window)

Won, S. H., Lee, Y. C., 2007, Adsorption Behavior of p-Chlorophenol on Nonionic Polymeric Adsorbents: Adsorption Equilibrium Behavior and Evaluation for Adsorbability of Adsorbents, Proceedings of the Korean EHS Assessment, 5(4), 13-23.