JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane
Lee, Seung-Won; Jeong, Chang-Hoon; Kim, Jung-Kwon;
  PDF(new window)
 Abstract
The objective of this research is to evaluate optimal conditions of permeability and selectivity on the polysulfone membrane for efficiency of separation of by checking four factors which are temperature, pressure, gas compositions and gas flow rates. When higher pressure was applied at the input, lower efficiency of recovery of and higher efficiency of separation of were shown. It has the tendency to show lower efficiency of recovery of and higher efficiency of separation of at the output as higher temperature at input. The lower flow rates make higher efficiency of recovery of and lower efficiency of separation of . Finally, over 90% efficiency for separation and recovery conditions are temperature (), pressure (8 bar), gas composition rate (6:4) () and gas flow rate (/min). These conditions make higher separation and recovery efficiency such as 90.1% and 92.1%, respectively.
 Keywords
Biogas; concentration;Recovery efficiency;Green house effect;
 Language
Korean
 Cited by
1.
신재생에너지로서 바이오가스 현황,임영관;이정민;정충섭;

공업화학, 2012. vol.23. 2, pp.125-130
 References
1.
민병무, 2009, 연소 후 이산화탄소 포집기술 현황, 한국공업화학회지, 12(1), 15-29.

2.
박우균, 정항배, 권순익, 채규정, 박노백, 2010,돈분 슬러리 성상에 따른 최적 바이오가스 회수, 한국환경농학회지, 29(2), 197-205. crossref(new window)

3.
배우근, 이영만, 2009, 페놀화합물이 폐수처리 미생물의 성장 및 바이오가스 생산에 미치는 영향, 한국폐기물자원순환학회지, 26(2), 175-182.

4.
송선호, 엄체윤, 허광범, 이남훈, 이채영, 2010, 유기성폐기물의 혐기성 소화가스 중에 함유된 실록산 농도의 특성, 한국폐기물자원순환학회지, 27(4), 348-355.

5.
오민, 박준용, 노승효, 홍성욱, 2009, 이산화탄소 분리를 위한 Pd-Ag 분리막 공정의 CFD모사, 한국공업화학회, 20(1), 104-108.

6.
이창근, 2009, 이산화탄소 포집기술 최신 개발 현황, 한국공업화학회지, 12(1), 30-42.

7.
이택홍, 김재영, 장세훈, 이효석, 최익환, 2010, 바이오가스의 $CH_4,\;CO_2$의 분리방법 연구, 한국수소 및 신재생에너지학회논문집, 21(1), 72-79.

8.
Barbieri, G., Scura, F., Lentini, F., De Luca, G., Drioli, E., 2008, A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes, Sep. Purif. Technol., 61(2), 217-224. crossref(new window)

9.
Caravella, A., Barbieri, G., Drioli, E., 2008, Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach, Chem. Eng. Sci., 63(8), 2149-2160. crossref(new window)

10.
Li, N. N., Ho, W. S. W., Fane, A. G., Matsuura, T., 2008, Advanced membrane technology and applications, John Wiley & Sons, Inc, New Jersey.

11.
Rifkin, J., 2002, The hydrogen economy, Wiley & Sone, New York.

12.
Shu, J., Grandjean, B. P. A., van Neste, A., Kaliaguine, S., Can, J., 1991, Catalytic palladium-based membrane reactors, Chem. Eng. Sci., 69, 1036.

13.
Spillman, R. W., 1989, Economics of gas separation membranes, Chem. Eng. Sci., 85, 41-62.

14.
Srinivasan, R., Auvil, S. R., Burban, P. M., 1994, Elucidation the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne](PTMSP) membranes, J. Membrane Sci., 86(1-2), 67-86. crossref(new window)

15.
Uemiya, S., Matsuda, T., Kikuchi, E., 1991, Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics, J. Membrane Sci., 56(3), 315-325. crossref(new window)

16.
Ward, T. L., Dao, T., 1999, Model of hydrogen permeation behavior in palladium membranes, J. Membrane Sci., 153(2), 211-231. crossref(new window)