Advanced SearchSearch Tips
Characteristics of Aerosol Particle Concentration by the Versatile Aerosol Concentration Enrichment System (VACES)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Aerosol Particle Concentration by the Versatile Aerosol Concentration Enrichment System (VACES)
Park, Jeong-Ho;
  PDF(new window)
The versatile aerosol concentration enrichment system (VACES) have proven useful for providing elevated levels of atmospheric aerosol to human and animal exposures. In this study, we describe a VACES and tests conducted to both optimize the enhancement factor (EF) and characterize how it depends on experiment conditions. Particle number concentrations were measured from upstream and downstream of the system by scanning mobility particle sizer (SMPS) with a long differential mobility analyzer (DMA) in combination with a condensation particle counter (CPC). SMPS was used for to determine VACES particle EF. Particle EF tends to increase for higher the saturator temperature () and lower the condenser temperature (). higher than and lower than was the best to obtain the most increase in particle concentration. Correlation analysis of EF with factor variables of and resulted in correlation 0.662 and 0.416, respectively. With all five predictor variables included in a multiple regression model, the EF had a liner correlation with .
Aerosol;Concentrator;VACES;Enrichment factor;
 Cited by
Kim, M. C., Lee, G. W., 1997, Experimental Study of Virtual Impactors for Aerosol Concentration, Proceeding of the Meeting of KOSAE 1997, 138-140.

Park, J. H., Suh, J. M., 2005, Physico-chemical characterization of individual particles emitted from the air pollution point sources, Journal of the Environmental Sciences, 14(8), 761-770. crossref(new window)

Baron, P. A., Willeke, K., 2001, Aerosol measurement : Principles, Technology, and Applications, 2nd ed. New York: John Wiley & Sons Inc..

Barr, E. B., Hoover, M. D., Kanapilly, G. M., Yeh, H. C., Rothenberg, S. J., 1983, Aerosol concentrator- Design, Construction, Calibration, and Use, Aerosol Sci Technol, 2, 437-442. crossref(new window)

Dick, C. A. J., Stone, V., Brown, D. M., Watt, M., Cherrie, J. W., Howarth, S., Seaton, A., Donaldsona, K.. 2000, Toxic and inflammatory effects of filters frequently used for the collection of airborne particulate matter, Atmospheric Environment, 34(16), 2587-2592. crossref(new window)

Donaldson, K., Li, X. Y,, MacNee, W., 1998, Ultrafine (nanometre) particle mediated lung injury, J. Aerosol Sci., 29(5/6), 553-560. crossref(new window)

Fuchs, N. A., 1975, Sampling of aerosols, Atmospheric Environment, 9, 696-707.

Geller, M. D., Biswas, S., Fine, P. M., Sioutas, C., 2005, A new compact aerosol concentrator for use in conjunction with low flow-rate continuous aerosol instrumentation, J. Aerosol Sci., 36, 1006-1022. crossref(new window)

Hinds, W., 1998, Aerosol Technology : Properties, Behavior, and Measurement of airborne particles, New York: John Wiley & Sons Inc..

Jung, H., Arellanes, C., Zhao, Y., Paulson, S., Anastasio, C., Wexler, A., 2010, Impact of the versatile aerosol concentration enrichment system (VACES) on gas phase species. Aerosol Science and Technology, 44, 1113-1121 crossref(new window)

Kim, S., Jaques, P. A., Chang, M., Barone, T., Xiong, C., Friedlander, S. K., Sioutas, C., 2001, Versatile Aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles. Part II: Development and Laboratory Characterization, J. Aerosol Sci., 32, 1299-1314. crossref(new window)

Pakbin, P., Ning, Z., Eiguren-Fernandez, A., Sioutas, C., 2011, Modification of the versatile aerosol concentration enrichment system(VACES) for conducting inhalation exposures to semi-volatile vapor phase pollutants, J. Aerosol Sci., 42, 555-566. crossref(new window)

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston G. D., 2002, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Am. Med. Assoc., 287(9), 1132-1141. crossref(new window)

Seinfeld, J. H., Pandis, S. N., 1998, Atmospheric chemistry and Physics, New York: John Wiley & Sons Inc..

Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., Radykewicz, R., Stampfl, A., Thorand, B., Peters, A., 2005, Cardiovascular effects of fine and ultrafine particles, Journal of aerosol medicine, 18(1), 1-22. crossref(new window)

Thurston, G. D., Ito, K., Hayes, C. G., Bates, D. V., Lippmann, M., 1994, Respiratory hospital admissions and summertime haze air-pollution in Toronto, Ontario-Consideration of role of acid aerosols, Environ. Res., 65, 271-290. crossref(new window)

Weiden, S. L., Drewnick, F., Borrmann, S., 2009, Particle loss calculator - a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479-494. crossref(new window)

Whitby, K. T., 1978, The physical characteristics of sulfur aerosol, Atmospheric Environment, 12, 135-159. crossref(new window)

Zhao, Y., Bein, K. J., Wexler, A. S., Misra, C., 2005, Fine PM, Sioutas C. Field evaluation of the versatile aerosol concentration enrichment system (VACES) particle concentrator coupled to the rapid single-particle mass spectrometer (RSMS-3), J. Geophys. Res.-Atmospheres, 110, DO7SO2:1-11.