Advanced SearchSearch Tips
Fabrication of Flow Cell Using Carbon Fiber and Electrochemical Decomposition Characteristics for Organic Dyes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Flow Cell Using Carbon Fiber and Electrochemical Decomposition Characteristics for Organic Dyes
Park, Deog-Su;
  PDF(new window)
The simulated dyes solution containing Basic Red 46(BR 46), Yellow 21(Y 21), and Maxilon Blue 30(MB 30) were electrochemically oxidized using carbon fiber as an anode. The electrolyses were performed in a electrolytic flow cell constructed by Vycor glass tube. The carbon fiber was positioned in the inside of Vycor glass tube and platinum wire coiled around outside of tube as a cathode. Several operating variables, such as current, time, pH and flow rate of solution were studied. Increasing current density would lead to a corresponding increase in the dye removal efficiency 99.2 % at a 200 mA. The electrolyses time could also improve and removal efficiency was about 99 % after 1.5 hours of electrolyses. The removal efficiency was increased with the increase of flow rate of solution and optimum flow rate was 5 mL/min. THe pHs of solution affect the removal efficiency. The removal efficiency was decreased with the increase of pH of solution and optimum pH was 5.05 (0.1 M ).
Dye;Electrochemical oxidation;Flow cell;Carbon fiber;
 Cited by
고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해,박영식;

한국환경보건학회지, 2014. vol.40. 2, pp.137-146 crossref(new window)
Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process, Korean Journal of Environmental Health Sciences, 2014, 40, 2, 137  crossref(new windwow)
Kim, D. S., Park, Y. S., 2009, Effect of operating parameters on electrochemical degradation of Rhodamine B by three-dimensional electrode, J. Env. Hlth. Sci., 35(4), 295-303.

Park, Y. S., Kim, D. S., 2010, Effects of operating parameters on electrochemical degradation of Rhodamine B and formation of OH radical using BDD electrode, J. Environ. Sci., 19(9), 1143-1152. crossref(new window)

Andrade, L. S., Ruotolo, L. M. M., Rocha-Filho. R. C., Bocchi, N., Biaggio, S. R., Iniesta, J., García-García, V., Montiel, V., 2007, On the performance of Fe and Fe,F doped Ti-Pt/Pb$O_{2}$ electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater, Chemosphere, 66, 2035-2043. crossref(new window)

Canizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M. A., Saez, C., 2006, Electrochemical oxidation of azoic dyes with conductive-diamond anodes, Ind. Eng. Chem. Res., 45, 3468-3473. crossref(new window)

Chen, X., Chen, G., Yue, P. L., Anodic oxidation of dyes at novel Ti/B-diamond electrodes, 2003, Chem. Eng. Sci., 58, 995-1001. crossref(new window)

Comninellis, C., 1994, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39, No. 11-12, 1857-1862. crossref(new window)

Enache, T. A., Chiorcea-Paquim, A. M., Fatibello-Filho, O., Oliveira-Brett, A. M., 2009, Hydroxyl radicals electrochemically generated in situ on a borondoped diamond electrode, Electrochem. Commun., 11, 1342-1345. crossref(new window)

Gulyas, J., Foldesa, E., Lazar, A., Pukanszky, B., 2001, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Composites: Part A, 32, 353-360. crossref(new window)

Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., Fabregat, A., Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon, 2012, J. Environ. Manage., 102, 148-164. crossref(new window)

Sanroman, M. A., Pazos, M., Ricart, M. T., Cameselle, C., 2004, Electrochemical decolourisation of structurally different dyes, Chemosphere, 57, 233-239. crossref(new window)

Shen, Z. M., Wu, D., Yang, J., Yuan, T., Wang, W. H., Jia, J. P., 2006, Methods to improve electrochemical treatment effect of dye wastewater, J. Hazard. Mater., B131, 90-97. crossref(new window)

Xiong, Y., Strunk, P. J., Xia, H., Zhu, X., Karlsson, H. T., 2001, Treatment of dye wastewater containing acid orange II using a cell with three-phase threedimensional electrode, Water Res., 35, 4226-4230. crossref(new window)

Yi, F., Chen, S., Yuan, C., 2008, Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater, J. Hazard. Mater., 157, 79-87. crossref(new window)