Advanced SearchSearch Tips
Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image
Yang, Sung-Kee; Kim, Dong-Su; Yu, Kwon-Kyu; Kang, Meyong-Su; Jung, Woo-Yul; Lee, Jun-Ho; Kim, Yong-Seok; You, Ho-Jun;
  PDF(new window)
Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.
Flood discharge;Surface image velocimetry;Electromagnetic surface current meter;Mountain stream;
 Cited by
도서지역 건천의 홍수유출 시 흐름 해석,양원석;양성기;

Journal of Environmental Science International, 2013. vol.22. 5, pp.571-580 crossref(new window)
표면영상유속계(SIV)를 이용한 홍수유출량 측정,김용석;양성기;류권규;김동수;

Journal of Environmental Science International, 2013. vol.22. 5, pp.581-589 crossref(new window)
재난감시용 하천 CCTV를 활용한 홍수유출량 산정,김용석;양성기;류권규;김동수;

Journal of Environmental Science International, 2014. vol.23. 4, pp.571-584 crossref(new window)
한천유역의 홍수량 산정을 위한 HEC-HMS 모형의 민감도 분석,정우열;양성기;김동수;

Journal of Environmental Science International, 2014. vol.23. 4, pp.533-541 crossref(new window)
산지하천의 전자파 표면유속 측정에 기반한 유량 및 유속 관측 오차 분석,김동수;양성기;정우열;

Journal of Environmental Science International, 2014. vol.23. 4, pp.543-552 crossref(new window)
선행강우를 고려한 제주하천 유출특성 분석,양성기;김동수;정우열;

Journal of Environmental Science International, 2014. vol.23. 4, pp.553-560 crossref(new window)
영상장비를 활용한 하천의 홍수유출량 산정,강보성;양성기;정우열;김용석;

Journal of Environmental Science International, 2014. vol.23. 4, pp.585-594 crossref(new window)
김서준, 류권규, 윤병만, 2011, 고정식 표면영상유속계 (FSIV)를 이용한 실시간 하천 유량 산정, 수자원학회 논문집, 44(5), 377-388.

김영성, 이현석, 2011, 전자파표면유속계의 성능개선 및 실용화, 한국수자원학회 2011년도 학술발표회 논문집, 85-85.

노영신, 2005, 영상해석 기술을 이용한 하천 유량 측정 기법 개발, 박사학위논문, 명지대학교.

노재경, 이재남, 2009, 비접촉식 유량측정의 현황, 한국수자원학회지, 42(6), 51-57.

뮤트로닉스, 2010, 평갈수용 전자파표면유속계, 특허출원 10-2010-89895.

양성기, 김동수, 정우열, 류권규, 2011, 다양한 첨단 유량 계측기기를 활용한 제주도 하천 유출 비교 분석, 한국환경과학회지, 20(6), 738-788.

우효섭, 2001, 하천수리학, 청문각, 280-286.

유량조사사업단, 2009, 2008년도 국토해양부 수위-유량 관계곡선식, 발간등록번호 HSC00-C-09-01

이상호, 김우구, 김영성, 1997, 전자파 표면 유속계의 하천 유량 측정에 관한 실용성, 한국수자원학회 논문집, 30(6), 671-678.

이찬주, 김원, 김치영, 김동구, 2009, 전자부자 시스템을 활용한 자연하천의 유속과 유량측정, 대한토목학회 논문집, 29(4B), 329-337.

정성호, 2002, 전자파표면유속계를 이용한 홍수기 유량 측정에 관한 연구, 석사학위논문, 밀양대학교 산업대학원.

제주발전연구원, 2009, 제주지역 하천유출수 활용을 위한 수문 및 수질특성 기초연구, 정책연구 2009-11, 3-4.

한국수자원공사, 1998, 전자파표면유속계 실용화 연구, WRRI-기획-98-3, 1-2.

Aya, S., Fujita, I., Yagyu, M., 1995, Field Observation of Flood in a River by Video Image Analysis, Proceedings of Hydraulic Engineering, JSCE, 39, 447-452.

Creutin, J. D., Muste, M., Li, Z., 2002, Traceless Quantitative Alternatives for Measurements in Natural Streams, Proceedings Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO (CD-ROM).

Fujita, I., Kunita, Y., 2011, Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera, Journal of Hydro-environment Research, 5(4), 323-331.

Fujita, I., Muste, M., Kruger, A., 1998, Large-scale particle image velocimetry flow analysis in hydraulic engineering applications, Journal of Hydraulic Research, 36(3), 397-414. crossref(new window)

Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Muste, M., Creutin, J. D., Wilson, M., 2008, Experimental System for Real-Time Discharge Estimation Using an Image-Based Method, Journal of Hydrology, 13(2), 105-110. crossref(new window)

Jerome, L. C., 2008, Challenges in Hydrometry: Some Examples from France, Experiences and Advancements in hydrometry, Seoul, Korea.

Kuhnle, R. A., Bowie, A. J., 1992, Loop Rating Curves from Goodwin Creek, Proceedings of the Hydraulic Engineering sessions at Water Forum '92, Baltimore, Maryland.

Lee, J. S., Julien, P. Y., 2006, Electromagnetic Wave Surface Velocimetry, Journal of Hydraulic Engineering, 132(2), 146-153. crossref(new window)

Marsh, M., 1990, Flo-Mate Model 2000 Portable Flowmeter Instruction Manual.

Muste, M., Kim, D., Merwade, V., 2012, Modern Digital Instruments and Techniques for Hydrodynamic and Morphologic Characterization of Streams, Chapter 24 in Gravel Bed Rivers: Processes, Tools, Environments, edited by Ashmore P., Bergeron N., Biron P., Buffin-Belanger T., Church M., Rennie C. Roy A.M., Wiley, New York, NY.

Muste, M., Fujita, I., Hauet, A., 2008, Large- scale particle image velocimetry for measurements in riverine environments, Water Resources Research, Vol. 44, W00D19. crossref(new window)

Ott, 2000, Radarsensor for contact free measurement of surfacewave level, Kalesto.

WMO, 2011, Manual on stream gauging, Volume II - Computation of discharge, WMO-No. 1044, 36-37.